
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, JULY 2021 1

Progressive Point Cloud Upsampling via
Differentiable Rendering

Pingping Zhang, Xu Wang, Member, IEEE, Lin Ma, Member, IEEE, Shiqi Wang, Member, IEEE, Sam
Kwong, Fellow, IEEE, Jianmin Jiang

Abstract—In this paper, we propose one novel progressive point
cloud upsampling framework to tackle the non-uniform distribu-
tion issue during the point cloud upsampling process. Specifically,
we design an Up-UNet feature expansion module which is capable
of learning the local and global point features via a down-feature
operator and an up-feature operator, respectively, to alleviate
the non-uniform distribution issue and remove the outliers.
Moreover, we design a hybrid loss function considering both the
multi-scale reconstruction loss and the rendering loss. The multi-
scale reconstruction loss enables each upsampling module to
generate a denser point cloud, while the rendering loss via point-
based differentiable rendering ensures that the proposed model
preserves the point cloud structures. Extensive experimental
results demonstrate that our proposed model achieves state-of-
the-art performance in terms of both qualitative and quantitative
evaluations. Github: https://github.com/ppingzhang/PPU.git

Index Terms—Point cloud upsampling, point-based differential
rendering, feature expansion unit

I. INTRODUCTION

RECENT years have witnessed dramatically increased
interest in point cloud based applications. However, due

to the hardware and computational constraints, 3D sensors
such as LiDAR often produce sparse, noisy and non-uniformly
distributed raw point cloud data [1], [2], [3], [4]. Since the
performance of 3D vision tasks is highly influenced by the
integrity of the input point cloud data, improvement of the
raw data quality via point cloud upsampling becomes an
essential step to enable the downstream applications, such as
3D object classification [5], semantic segmentation [6], and
shape reconstruction [7], [8], [9], [10], [11].

This work was supported in part by the National Natural Science Foundation
of China (Grant 61871270 and 61620106008), in part by the Shenzhen
Natural Science Foundation under Grants JCYJ20200109110410133 and
20200812110350001, in part by the National Engineering Laboratory for Big
Data System Computing Technology of China. (Corresponding Author: Dr.
Xu Wang)

Pingping Zhang is with the College of Computer Science and Software
Engineering, Shenzhen University, China, and also with the Department of
Computer Science, City University of Hong Kong, Kowloon, Hong Kong.
Email: (ppingyes@gmail.com).

Xu Wang and Jianmin Jiang are with the College of Computer Sci-
ence and Software Engineering, Shenzhen University, China, and also with
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ),
Shenzhen University, Shenzhen, 518060, China. Email: (wangxu@szu.edu.cn,
jianmin.jiang@szu.edu.cn).

Lin Ma is with Meituan, China. Email: (forest.linma@gmail.com).
Shiqi Wang and Sam Kwong are with the Department of Computer

Science, City University of Hong Kong, Kowloon, Hong Kong. Email:
(shiqwang@cityu.edu.hk; cssamk@cityu.edu.hk).

Copyright © 20xx IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Compared with the traditional 2D image super-resolution
task, the point cloud upsampling task is more challenging.
First, unlike the 2D image with a regular sampling grid [12],
the raw point cloud is irregular, sparse, noisy and non-uniform.
Thus, the point cloud upsampling task aims to not only
produce a denser version, but also remove noise, protect
the structure and thereby generate a dense and uniformly
distributed point cloud. Second, the objectives of the point
cloud upsampling task are supposed to be application depen-
dent [5], [13]. As a point cloud set is only an intermediate
representation of the 3D scene, the generated points should be
informative and uniform to assist other applications, such as
surface reconstruction and view synthesis.

Numerous efforts [14], [15], [16], [9], [10], [17], [18]
have been devoted to investigating point cloud upsampling
techniques to ensure the consistency and integrity of point
cloud data. The earlier works focused on reconstructing a
piece-wise smooth representation of the original shape, and
specialized priors have been incorporated to address the chal-
lenges from data imperfections [19], [20], [21]. However, these
priors may not always be appropriate, and in practice, certain
shapes may fail to adhere to these priors. More recently,
inspired by the success of point-based deep learning [22], deep
learning-based point cloud upsampling techniques [9], [10]
have attracted growing attention. Many learning-based works
attempt to reconstruct uniformly distributed points, which are
located close to underlying surfaces. For example, Yu et al. [9]
proposed a repulsion loss in the PU-Net to make points more
uniformly. Li et al. [10] proposed a uniform loss to generate
point clouds with uniform distribution. However, these models
largely ignore the local quality of the reconstructed surface.
Since point clouds are unordered, existing loss functions can
only measure the global quality of dense point cloud data but
cannot preserve the local quality of reconstructed surfaces.
Moreover, most models were designed for a fixed upsampling
ratio. To upsample with varying scales, they need to train
multiple models with pre-defined ratios. Some models need
to call numerous times because they break upsampling into
multiple small upsampling. For example, a 4×-upsampling
operation needs to be broken into two 2× steps, so this model
needs to be called twice. These methods increase the model
complexity, as well as the training and testing time.

To resolve the challenges, we propose a progressive point
cloud upsampling framework via the point-based differentiable
rendering, which tackles the non-uniform distribution issue of
the point cloud. Specifically, the proposed upsampling frame-
work consists of a contextual representation (CR) module

https://github.com/ppingzhang/PPU.git

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, JULY 2021

and a number of cascaded upsampling modules with shared
parameters. To support the progressively upsampling, our
model shares different resolution information both inside and
between upsampling modules, and each of them produces a
denser point cloud to achieve multi-scale upsampling. Inspired
by the concept of the point-based differentiable rendering [23],
a rendering loss is proposed to enforce the network to learn
the underlying geometry of a latent target object via measuring
the fidelity of synthesized images under different camera
poses. Accordingly, the error back propagates through the
differentiable renderer, so the network is capable of learn-
ing the structure preserved features. We conduct extensive
experiments on a sparse, noisy and incomplete dataset to
demonstrate the effectiveness of our approach, aiming to
generate high quality dense and complete point clouds. As
a result, our approach leads to outstanding performance for
the final point cloud upsampling results surpassing the state-
of-the-art (SOTA) methods. Moreover, ablation studies and
experimental analyses demonstrate the intermediate benefits
of our method.

In summary, the main contributions of this paper lie in the
following three folds.

1) We propose a flexible framework that can upsample
point cloud progressively to support multi-scale upsam-
pling. The proposed Up-UNet feature expansion unit
enables the model to learn global point features, remove
the outliers and alleviate the non-uniform issue.

2) We design a hybrid loss function considering both multi-
scale reconstruction loss and rendering loss. The multi-
scale reconstruction loss enables each upsampling unit
to output a denser point cloud, while the rendering loss
via the point-based differentiable rendering forces the
model to learn the structure preserved features.

3) Extensive experiments and analyses verify the effective-
ness of our approach on different point cloud tasks. The
proposed approach improves the quality of reconstructed
point cloud and outperforms the SOTA methods.

II. RELATED WORK

A. Point Cloud Processing

There are three typical point cloud processing tasks: point
cloud upsampling, point cloud denoising and point cloud
completion. From the aspect of optimization-based meth-
ods [14], [24], [25], [13], most of them consider various
shape priors to constrain the geometry reconstruction. Alexa
et al. [24] provided a framework to approximate a smooth
manifold surface defined by a set of points and resampled the
surface to generate an adequate representation of the surface.
Lipman et al. [25] introduced a Locally Optimal Projection
for surface approximation from point cloud data. Huang et
al. [13] modified and extended the LOP operator to produce a
clean and uniformly distributed point set endowed with reliable
normals. These traditional point cloud processing methods
mostly consider surface reconstruction. Due to the excellent
performance of deep learning, these traditional tasks have a
better outcome under this method. To generate uniform dense
point clouds, Yu et al. [26] presented EC-Net, which is the

first edge-aware network for consolidating point clouds. PU-
Net [9], PU-GAN [10] and MPU [16] can remove outliers
and generate dense point clouds simultaneously. PUGeo-Net
[11] can compute normals for the original and generated point
clouds to improve the quality of the surface reconstruction. To
improve the surface approximation via point set upsampling,
Lin et al. [27] proposed CAD-PU to realize the curvature-
adaptive feature expansion.

Most of the upsampling models can not process point clouds
with large holes [26], since the point cloud structure was de-
stroyed and these models can not extract the critical structure
effectively. In this context, point cloud upsampling tasks share
the same aim as point cloud completion tasks, as they need
to achieve point cloud inpainting to guarantee the completion
of the whole structure and obtain a uniform and dense point
cloud [28]. As such, point cloud completion is also a popular
topic in 3D reconstruction. PF-Net [29] generated the target
point cloud with both rich semantic profiles and detailed
characters while retaining the existing contour. These models
can achieve point cloud inpainting to guarantee the completion
of the whole structure. Nevertheless, it can not indicate that
their models can remove the outliers and generate a dense
point cloud uniformly. PCN [30] generated a dense point
cloud in a coarse-to-fine fashion on raw point clouds without
voxelization. ECG [31] can complete the point cloud by two
stages, which are the coarse and fine stages. Likewise, Wang
et al. proposed a cascaded refinement network together with a
coarse-to-fine strategy to synthesize the detailed object shapes
[32]. Their model considered the local details of partial inputs
with the global shape information together. Analogously, our
model can achieve the point cloud reconstruction progressively
via multiscale fine-tuning. Benefited from the special model
design and the hybrid loss, our proposed model can complete
various point cloud tasks, e.g., upsampling, denoising and
completion.

B. Point-based Functional Module

Existing point cloud upsampling models [9], [10], [16]
design point-based functional modules by employing the com-
mon architectures such as ResNet [33], DenseNet [34] and
UNet [35] as backbones. Owing to the limitation of model
structure, these models can only process noisy point clouds
and conduct dense point clouds under the same structure,
but they can not guarantee the good quality of the point
cloud upsampling task with serious noise. For example, PU-
Net [9] and PU-GAN [10] can process the point cloud with
slight noise. Our proposed Up-UNet feature expansion module
consists of an up-feature operator and a down-feature operator,
which combine the benefits of existing point-based functional
modules to process the noisy point clouds well.

A popular and simple up-feature is to duplicate the feature
multiple times. However, this strategy could not protect the
point structure information, such that PU-GAN and MPU in-
troduce the grid information to guide point cloud upsampling.
The down-sampling layer, the inverse process of upsampling,
can extract key points and corresponding features. The tradi-
tional methods, such as farthest point sampling and Poisson

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR IEEE JOURNALS 3

Fig. 1. The architecture of our proposed model. The shared upsampling module consisting of an Up-UNet and a CR module is cycled multiple times. The
loss function mainly is composed of the multi-scale reconstruction loss and the rendering loss. Due to the point-based differentiable rendering, the error can
be backpropagated.

disk sampling, have been widely used for decades. Inspired
by the success of PointNet [36] on classification, many key
point extraction methods were studied in recent years. The
PointNet++ [22] captures both local geometry contexts via a
hierarchical feature learning architecture. These models only
deal with a single function and can not effectively combine.
Our proposed Up-UNet, based on the UNet, learns the global
and local features via an up-feature operator and a down-
feature operator, respectively, to effectively alleviate the non-
uniform distribution issue and remove the outliers.

C. Differentiable Rendering

Renderers are traditionally designed to solve the forward
process of image synthesis. Recently, deep learning has been
popular in 3D reconstruction tasks [37], [38], [39], [23], [40],
[41]. Therefore, various differentiable rendering techniques
were introduced to generate rendering images, which also
can help 3D model reconstruction via error backpropagation.
Existing differentiable renderers can be classified into four
categories according to the geometric representation: point-
based [23], [42], [43], [40], voxel-based [44], [45], [46], mesh-
based [47], [48], [37] and implicit neural function based [49],
[50]. Voxel-based methods come with high memory require-
ments even for relatively coarse geometries. Mesh-based meth-
ods exploit the sparseness of the underlying geometry in
the 3D space. However, converting into a mesh form is a
challenging and error-prone operation. These methods are

limited to global and topological changes, and connectivity
is not differentiable. More recently, implicit neural functions
are popularly applied to represent scenes, as they can achieve
a high spatial resolution. However, existing approaches are
limited by the low network capacity and inaccurate intersec-
tions of camera rays with the scene geometry. Point-based
methods directly operate on point samples of the geometry,
which is flexible and efficient. In this context, a fast and
effective point-based differentiable renderer [23] is adopted to
capture rendering images from various camera poses, which
contributes to the local geometry reconstruction.

III. PROPOSED MODEL

Suppose the captured raw point cloud is denoted as P ={
pi ∈ Rd

}N

i=1
of N points, where d is the dimension of the

input point cloud attributes, i.e., coordinates, color and normal.
Here, we only consider the 3D coordinates with d = 3. The
point cloud upsampling network aims to generate a denser
point cloud P̂ =

{
p̂i ∈ Rd

}rN

i=1
with upsampling ratio r from

P , by minimizing the reconstruction distance between P̂ and
the ground truth (GT) points Q =

{
qi ∈ Rd

}rN

i=1
. As shown

in Fig. 1, the pipeline of our proposed model consists of a CR
module and L cascaded upsampling module with shared pa-
rameters. The CR module first transforms the raw point cloud
into the feature domain and outputs the aggregated point-wise
feature map F0 and initially reconstructed point cloud P0.
The following upsampling module will progressively process

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, JULY 2021

the point cloud Pl−1 with the upsampling ratio rl for the l-th
module and output the reconstructed point cloud Pl. When
L is set to 1 and the first up-feature operator is withdrawn,
it becomes a point cloud completion network. Details of our
proposed CR module and Up-UNet feature expansion module
are discussed as follows.

A. Contextual Representation Module

The proposed CR module aims to extract point features from
the noisy input and output the reconstructed points for the next
upsampling iteration. Specifically, our proposed CR module
consists of feature extraction and coordinate reconstruction
operators. We adopt the feature extraction module in [16],
which can integrate features across different layers through
dense connections. In each dense block, it generates a local
neighbourhood which is computed dynamically via feature-
based K-Nearest Neighbor (KNN). Then, a chain of densely
connected Multilayer Perceptron (MLP) layers refine grouped
features, and finally, a max-pooling operator is applied to
achieve order-invariance. Accordingly, the coordinate recon-
struction operator is capable of extracting long-range and
non-local information. The CR module is embedded into
the primary stage and the end of each Up-UNet upsampling
module. The purpose of the first CR module aims to extract
the contextual features F0, and initially reconstructed points
P0.

B. Upsampling Module

As shown in Fig. 1, our proposed upsampling module
consists of an Up-UNet feature expansion unit and a CR mod-
ule. Unlike the official UNet architecture [35], our proposed
module firstly upsamples point features via an up-feature
operator, which not only extracts the local point features but
also adjusts the features according to the neighbouring features
via a channel attention operator. Besides, such upsampling
module can maintain the order of the input point cloud since
the number of features is doubled by duplication. Then, to keep
the consistency of the guided point cloud, we split the first N
point features from the upsampled features. The first down-
feature operator only conducts the sampling operation without
changing the number of points, which extracts neighbouring
information and builds the relation of closing points. The
second down-feature operator performs the real downsampling
to extract key points and important point features. Subse-
quently, the continuous upsampling operations, together with
the expansive paths, allow the network to propagate context
information to reconstruct a dense point cloud.

For progressive upsampling, a CR module is stacked after an
Up-UNet feature expansion unit for the coordinate reconstruc-
tion of the upsampled point cloud. Since all the Up-UNet and
CR units share the same parameters, our proposed upsampling
module can handle point clouds with various upsampling
ratios. Details of the up-feature operator and the down-feature
operator are discussed as follows.

1) Up-feature Operator: The up-sampling operator is indis-
pensable in the point cloud upsampling task. A common and
simple way is to duplicate the feature multiple times. However,

(a) Up-UNet

(b) Up-feature operator

(c) Down-feature operator

Fig. 2. Figure (a) is the case of 2× upsampling. Operators in our proposed
Up-UNet feature expansion modules: (a) Up-UNet; (b) Up-feature operator;
(c) Down-feature operator.

this way can not protect the point structure information.
Therefore, to expand the input point feature FU ∈ RN×C for
r times, our proposed up-feature operator unfolds the point
features based on the 2D grid. As shown in Fig. 2, the 2D
grid mechanism in FoldingNet [51] is adopted to generate a
unique 2D vector via per feature-map copy. Specifically, the
grid position matrix is denoted as GU ∈ Rr×2. Meanwhile, the
expanded feature E ∈ RrN×(C+2) is generated by duplicating
and concatenating input point features and a grid position
vector. The j-th node of expanded feature E is defined as
Ej = (Gj%r, Fj/r). Based on the folding method, the up-
feature operator can increase the variation of point features in
the distribution density.

To improve both local channel interaction of point features,
we adopt the ECA unit [52] to readjust features via feature
aggregation of the nearest neighbouring features. Compared
with other attention modules, such as the spatial attention
module [53], [54] and the convolutional block attention mod-
ule [55], the ECA unit can appropriate cross-channel in-
teraction to preserve features and benefits the point feature
reconstruction. At the end of the module, a set of MLPs is
applied to refine and produce more consistent geometric details
for the final expanded point features.

2) Down-feature Operator: The down-feature operator, the
inverse process of upsampling, can extract key points and cor-
responding features. The traditional methods, such as farthest

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR IEEE JOURNALS 5

Fig. 3. The first row shows the pipeline of the differentiable point cloud
renderer [23]. Points in the cube represent the camera poses. The second row
is the rendering results of dense point clouds and its sparse version with 32
camera poses.

point sampling and Poisson disk sampling, are widely used
for decades. Inspired by the success of PointNet++ [22],
it can capture local geometry contexts via a hierarchical
feature learning architecture. Thus, our down-feature operator
integrates a similar downsampling policy to extract important
point features.

Accordingly, our proposed down-feature operator aims to
hierarchically group input point features and progressively
abstracts key points features. To extract both local and global
salient point features from noisy input point features, we apply
the local learning mechanism on the input point features FD

with the guidance of the input point cloud PD. Specifically,
the proposed local feature extractor comprises three key layers:
a sampling layer, a grouping layer and a PointNet layer. The
sampling layer initially selects the centroids of local regions
following iterative farthest point sampling (FPS) to choose a
subset with N

r points and the corresponding point features.
Then, the grouping layer constructs a group of local point
features GD ∈ RN

r ×K×(d+C) by finding K neighbouring
points around the centroids. Finally, each local region is
abstracted by its centroid and local features via a mini-
PointNet, which encodes local region patterns GD into feature
vectors ĜD ∈ RN

r ×(d+C). The module can capture point-to-
point relations in the local region by using relative coordinates
together with point features. Same as the up-feature operator,
an ECA module and a set of MLPs are applied to obtain point
features F̂D ∈ RN

r ×C .

C. Loss Function

We propose a novel hybrid loss function to train the network
for point cloud upsampling. This hybrid loss contains a
reconstruction loss and a rendering loss, which can encourage
the model to reconstruct detailed point clouds.

Multi-Scale Reconstruction Loss The multi-scale recon-
struction loss measures the difference between the output
points and the GT points with different resolutions. Point
clouds are disordered, such that we employ the Chamfer
Distance (CD) [56] as the reconstruction loss, which is in-
variant to permutations of the points. Specifically, we use

the following symmetric CD function, which calculates the
average closest distance between the output point cloud Pl of
the l-th upsampling unit and the corresponding GT points Ql,
the downsampled version of the GT points Q. In this context,
our model can produce upsampling point clouds with multiple
ratios and ensuring the quality of the upsampled point cloud.

LCD (Pl,Ql) =
1

|Pl|
∑
p∈Pl

min
q∈Ql

∥p− q∥2

+
1

|Ql|
∑
q∈Ql

min
p∈Pl

∥q− p∥2.
(1)

The first term in Eq. (1) focuses on minimizing the distance
of output points and the closest GT point, whereas the second
term ensures that the GT point cloud is covered by the output
point cloud. Finally, we measure the overall reconstruction loss
LR by merging the reconstruction loss of all the upsampling
units,

LR =

L∑
l=1

λlLCD (Pl,Ql) , (2)

where λl represents the weight of the l-th upsaming unit.
Rendering Loss. Inspired by the model from Insafutdinov

et al. [23], we introduce the rendering loss to learn high-
fidelity shape models solely from their projections. Instead
of learning camera poses, we fix the multiple cameras poses
to estimate the rendering views. In this way, our model can
reconstruct point clouds by preserving the details.

To ensure the fidelity of the synthesized images rendered
from the reconstructed point cloud, we employ the point-based
differentiable renderer π as in [23], which projects 3D point
cloud data into 2D view images according to the camera pose
settings. The pipeline of the point cloud renderer is illustrated
in Fig. 3. First, it transforms the 3D coordinate of the raw point
cloud into the standard coordinate frame by the projective
transformation corresponding to the camera pose. Second, to
guarantee the back-propagation of a gradient in the training
stage, the discretized point is represented as scaled Gaussian
densities to obtain the occupancy map. By introducing the dif-
ferentiable ray tracing operator, the occupancies are converted
into ray termination probabilities. Final, the projected image
is obtained by projecting the volume to the plane.

Specifically, given the s-th pose cs, we obtain raw projected
view images Is = π(Q, cs) and reconstructed projected view
images Îs = π(P̂, cs) from the groundtruth Q and final output
P̂ , respectively. The rendering loss Lv is defined as the mean
absolute difference of Îs and Îs for all the camera poses. That
is,

Lv =
1

SWH

S∑
s=1

W∑
x=1

H∑
y=1

|Is(x, y)− Îs(x, y)|, (3)

where S is the total number of camera poses. In this work,
we take 8 camera poses evenly on the projection plane of
each rotation axis (x, y, z), and there are 8 camera positions
in each diagonal position with a total of 32 camera poses,
as shown in Fig. 3. Specifically, three colour planes in Fig. 3

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, JULY 2021

represent different projection planes. The 8 points in the colour
planes denote 8 camera positions of rendering images in each
row. Compared with the rendering images of the sparse point
clouds, the rendering images from the dense point clouds
are more clear and have high resolution. The rendering loss
combined with multiple local rendering images will enforce
the network to reconstruct local features of point clouds.

Hybrid loss Overall, we train our model by minimizing L:

L = LR + αLv + β∥θ∥2, (4)

where α is the weight of Lv , θ indicates the parameters in our
network and β denotes the multiplier of the weight decay.

IV. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to evaluate
the performance of our proposed model. In the following
subsections, we first describe the experimental settings such
as datasets, evaluation metrics and implementation details.
Details on the performance comparison between the proposed
model and the SOTA models are described as follows.

A. Experimental Settings

1) Datasets: To objectively compare the performance of the
model, we train and test our model under the dataset provided
by PU-GAN [10], which collected 147 3D models from the
released datasets of PU-Net [9] and MPU [16], as well as
from the Visionair repository [57]. For each point cloud, we
randomly crop 200 patches and collect 24,000 patches in
total. By default, we set the input number N as 256, the
upsampling ratio r as 4. Moreover, we add different degrees
θ ∈ {0.5%, 1%, 1.5%, 2.5%} of Gaussian noise to evaluate
the model’s ability of noisy removal. For the point completion
task, we also train and test our model from a subset of the
Shapenet dataset [58] derived from the dataset in Yuan et
al. [30]. In our experiments, both input and GT point clouds
are sampled 2048 points uniformly. To avoid overfitting in
training, we augment the network inputs by random rotation
and scaling.

2) Implementation Details: We trained the network with
100 epochs via the Adam algorithm [59]. We set the learning
rates as 0.001, and it gradually reduces with the increase of
iterations. The batch size is 28, and {λ1, λ2} = {1.0, 0.3}
and both α and β are empirically set as 1.0. Different from
MPU, our training only needs one stage. We implemented our
network using TensorFlow and trained it on the Tesla V100
GPU.

Our model can adapt to multi-resolution upsampling. Take
the 4× model as an example that PU-GAN only achieves
the N × 4 upsampling. If PU-GAN requires to realize 2×
upsampling, it needs to samples the results of 4× upsampling.
Unlike PU-GAN, our model can directly obtain the output of
the first Up-UNet module as the result of 2× upsampling, and
the second Up-UNet module, as a result of 4× upsampling.
If we want to achieve a higher ratio upsampling, we need to
carry on the cycle operation on the basis of 4× upsampling
because the transformation of 4× feature space is considered
in the model training. If our model upsamples points with 16×

or higher times, we can get the middle 2×, 4×, 8× results
directly. For other upsampling ratios, we can sample the given
number of points from the upsampled points.

3) Evaluation Metrics: For quantitative evaluation, we em-
ploy the point-to-surface (P2F) distance, CD, and Hausdorff
distance (HD) [60] to evaluate our proposed model against
the SOTA methods on point cloud upsampling and denoising.
Each ground truth 3D model contains 8192 points, and then
we randomly select 2048 points as the testing input. Similarly,
we follow the patch-based strategies in PU-GAN, MPU, EC-
Net and PU-GAN to extract a local patch with 256 points per
seed. Then, after processing, these sub-patches are combined
as the final output. For the point completion task, we evaluate
our model across 8 classes from the Shapenet dataset [58]. For
each class, the CD is employed to evaluate the reconstructed
models.

B. Comparisons with the State-of-the-Art Methods

In this subsection, our proposed method is compared with
the SOTA methods on different tasks, including point cloud
upsampling, denoising and completion.

1) Point Cloud Upsampling: We qualitatively and quanti-
tatively compare our proposed method with three SOTA point
cloud upsampling methods, including PU-Net [9], MPU [16],
and PU-GAN [10]. We use their public code and retrain their
networks on our training dataset. Table I shows the quantitative
comparison results, which are the average results in the testing
data. Our proposed method achieves the lowest values for
all the evaluation metrics. Besides quantitative results, some
examples of upsampling results for all the methods are pro-
vided in Fig. 4 for four different 3D models (“Horse”, “Tiger”,
“Status” and “Camel”). The first row (Input) shows the input
point clouds, and the second row (GT) is the corresponding
dense points. We amplify the local point cloud and find that
our proposed method has a good performance to deal with
complex areas and produces more fine-grained details.

To analyze the influence of the reconstructed point cloud on
the synthesized images, we further provide examples of syn-
thesized images for the upsampled 3D point clouds in Fig. 5.
It is observed that there are many holes in the synthesized
images for methods PU-Net, MPU and PU-GAN, which do
not consider the surface reconstruction in their architecture
design. The above models can not deal with the complex 3D
model with occluded objects or surfaces since the input sparse
point clouds do not have complete structures. Our proposed
method can learn the structure prior from the training dataset
via the constraint of rendering loss.

2) Point Cloud Denoising: To demonstrate the robustness
of our proposed model on noise tolerance, we evaluate all
pre-trained models on a synthetic dataset with different noisy
levels, including 0.5%, 1.0%, 1.5%, and 2.5%, respectively.
All the methods are implemented to 4×-upsamping the noisy
point clouds. Table I shows the comparison results of point
cloud upsampling with different noisy levels. It is observed
that the performance of all the methods decreases as the noise
level increases. As illustrated in Fig. 6, for point clouds with
noise level 0.5% , most models can get rid of noise and

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR IEEE JOURNALS 7

Fig. 4. Visual comparisons of upsampled point clouds (×4) by PU-Net [9], MPU [16], PU-GAN [10] and ours.

Fig. 5. Examples of synthesized images rendered by the point cloud renderer [23] from the “Elk” model, where each row corresponds to a fixed camera pose.
From left to right: they are the rendered images for the GT points, upsampled points of methods PU-Net [9], MPU[16], PU-GAN[10] and Ours, respectively.

TABLE I
QUANTITATIVE COMPARISON WITH THE SOTA METHODS FOR 4×-UPSAMPLING RESULTS ON THE POINT CLOUD UPSAMPLING TASK WITHOUT NOISE

AND WITH 0.5%, 1.0%, 1.5% AND 2.5% NOISE. (BOLD DENOTES THE BEST PERFORMANCE.)

Methods
level=0 level=0.5% level=1.0% level=1.5% level=2.5% #Network size Runtime

P2F CD HD P2F CD HD P2F CD HD P2F CD HD P2F CD HD M s
10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

PU-Net 8.230 0.584 6.656 5.513 0.455 5.373 9.164 0.620 7.970 13.205 0.986 10.830 21.375 1.737 21.218 10.10 0.178
MPU 4.288 0.480 6.033 5.233 0.613 7.060 7.958 0.695 8.329 11.371 0.922 11.240 18.676 1.420 16.555 92.50 1.807
PU-GAN 2.708 0.262 4.178 3.753 0.311 5.454 7.244 0.439 7.656 11.608 0.751 13.174 20.392 1.526 21.745 9.57 0.484

Ours 2.533 0.259 3.911 3.613 0.311 4.955 4.219 0.561 5.481 8.465 0.574 8.638 16.568 1.134 16.056 34.31 0.921

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, JULY 2021

TABLE II
PERFORMANCE COMPARISON WITH THE SOTA APPROACHES FOR POINT CLOUD COMPLETION IN THE CD. (BOLD AND UNDERLINING DENOTE THE BEST

AND SECOND PERFORMANCE, RESPECTIVELY.)

Methods Airplane Cabinet Car Chair Lamp Sofa Table Watercraft CD (10−4)

Folding 12.83 23.01 14.88 25.69 21.79 21.31 20.71 11.51 19.07
PCN 9.79 22.70 12.43 25.14 22.72 20.26 20.27 11.73 18.22

PointSetVoting 6.88 21.18 15.78 22.54 18.78 28.39 19.96 11.16 18.18
AtlasNet 10.36 23.40 13.40 24.16 20.24 20.82 17.52 11.62 17.77

PointNetFCAE 10.30 19.06 11.82 24.68 20.30 20.09 17.57 10.50 16.88
TopNet 7.32 18.77 12.88 19.82 14.60 16.29 14.89 8.82 14.25
GRNet 6.13 16.90 8.27 12.23 10.22 14.93 10.08 5.86 10.64

Ours 4.45 20.50 9.99 17.24 13.38 20.70 15.27 6.52 13.60

Fig. 6. The comparison of results under different noisy inputs (“Elephant”).
From top to bottom: they are the GT points, input points, upsampled points
of PU-Net [9], MPU [16], PU-GAN [10] and Ours. From left to right: they
are the results of different models according to inputs with noisy levels of
0.5%, 1.0% and 2.5%.

keep a good shape. However, for point clouds with noise
level 2.5%, the results of PU-Net, MPU and PU-GAN contain
apparent outliers, e.g., elephant’s legs. Thus, these methods
can only process point clouds with a slight noise level and
not process serious noise. Compared with the SOTA methods,
our proposed model is relatively robust to the noise level and
can generate uniform point clouds, e.g., elephant’s body.

3) Point Cloud Completion: For performance evaluation on
point cloud completion task, we only use one Up-UNet feature
expansion module and remove the first up-feature operator
in our proposed method. To protect the completion of point
cloud structure, the raw incomplete point clouds is fed into the
network as a whole. The training data for this task has 2048
points per 3D scene. For fast training, the number of camera
poses in the point cloud render is reduced from 32 to 6. Both
EMD and CD as the reconstruction loss better result than most
existing models, but EMD is better than the CD from our
experiment. Therefore, we employ EMD instead of CD as the
reconstruction loss in the point cloud completion task. In the
testing stage, we evaluate our model across 8 category from
the Shapenet dataset, including “Airplane”, “Cabinet”, “Car”,
“Chair”, “Lamp”, “Sofa”, “Table” and “Watercraft”. Table
II summarizes the comparison results on the leaderboard1

provided by the official testing platform. Notably, the table
shows the average result of each category, not a single 3D
model. Our proposed method is better than most SOTA models
for point cloud completion, but not over GRNet [64]. As
shown in Fig. 7, our proposed method can protect the whole
structure, even if the input points have serious distortion, e.g.,
the car in the last row. Although our model would generate
outliers in the “Chair” case, like the legs of the chair, it has
a clear skeleton. The “Chair” model completed by PCN has a
clear structure, but this model cannot keep the original shape.
For the “Cabinet” model, even though our model has low CD
values, it can get a similar structure of the GT points and good
visualization. For the “Airplane” model, our model can gain
more detailed information, such as the wing and head of the
plane.

C. Upsampling Real-scanned Data

Our proposed method is also evaluated on real-world
scanned data downloaded from KITTI dataset [1], which

1https://completion3d.stanford.edu/results

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR IEEE JOURNALS 9

Fig. 7. Visual comparison of the results of Folding [51], PCN [30], PointSetVoting [61], AtlasNet [62], PointNetFCAE [base.], TopNet [63], GRNet [64] and
our proposed method on the point cloud completion task. From top to bottom, there are the results of “Chair”, “Airplane”, “Cabinet” and “Car” models.

is captured by LiDAR for autonomous driving. As shown
in Fig. 8, due to the limitation of hardware, the original
point cloud suffers from outliers, sparsity and non-uniform
distribution issues, e.g., vehicles, pedestrians, and cyclists, are
represented with only a few points. Due to a large amount
of point cloud data from the KITTI dataset, we divide every
point cloud into many patches with 256 points, upsample
them 4 times separately, and finally merge them. In this
manner, the point cloud becomes denser and increases more
geometrical details. The dense point clouds with a good
geometrical structure may benefit the other tasks, e.g., point
cloud segmentation and classification.

D. Ablation Study

1) Up-UNet Feature Expansion Module: To quantitatively
evaluate the contribution of our proposed Up-UNet module,
two deformations, including UNet-Up and Up-Down-Up, are
employed to replace the Up-UNet module. Specifically, the
UNet-Up module only changes the position of the first up-
feature operator. The Up-Down-Up module is from PU-GAN,
and it replaces the Up-UNet. The results are shown in Table
III. For the UNet-Up structure, part of the point information
will lose via the first two down-feature layers. Implementing
an up-feature operator first can help keep the raw information.
For the Up-Down-Up structure, their proposed down-feature
operator does not consider the local relationship. Overall,
our proposed Up-UNet module has a good performance on
neighbouring feature extraction and point cloud reconstruction.

Moreover, an ablation study quantitatively evaluates the con-
tribution of each of our proposed components, e.g., the model
Ours(Up) using the Up-feature operator instead of Up-UNet,
the model Ours(w/o CR) without the CR module, and the
model Ours(w/o ECA) without ECA in the upsampling layer.
The model names with the signal of “#” (e.g., #Ours(Up),

TABLE III
THE QUANTITATIVE COMPARISONS OF UP-UNET FEATURE EXPANSION
MODULES AND REMOVING EACH SPECIFIC COMPONENT FROM HYBRID

LOSSES.

Setting P2F (10−3) CD (10−3) HD (10−3)

Ours(UNet-Up) 2.869 0.267 4.375
Ours(Up-Down-Up) 2.904 0.279 4.029

Ours(Up) 2.947 0.295 4.949
Ours(w/o CR) 4.740 0.421 6.401

Ours(w/o ECA) 3.696 0.342 5.953

#Ours(Up) 18.246 1.299 19.834
#Ours(w/o CR) 17.804 1.236 20.558

#Ours(w/o ECA) 17.424 1.222 18.560
#Ours 16.056 1.134 16.568

Ours (w/o Lv) 2.552 0.260 4.298
Ours (w/o LR) 2.457 0.253 4.128

Ours 2.533 0.259 3.911

#Ours(w/o CR) and #Ours(w/o ECA)) represent that these
models work for noisy point clouds. These results are from
point clouds with a noise level of 2.5%. Our full pipeline
performs well, and removing any component reduces the over-
all performance, meaning that each component contributes. In
particular, removing the CR module significantly increased the
difficulty of the task. Quantitative results shown in Ours(Up)
and #Ours(Up) demonstrate that the Up-UNet structure plays
an important role in extracting the key points and reduces
noise. The model without the ECA module cannot readjust
features, which leads to poor performance on the final result.

2) Hybrid Loss: To evaluate the contributions of hybrid
loss on our proposed model, we remove each component of
hybrid loss and evaluate the effect of it. As shown in Table
III, if we do not adopt the rendering loss (denoted as Ours
(w/o Lv)) during the training stage, the upsampling result on
the evaluation of the HD value decreases from 3.911 to 4.128.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, JULY 2021

Fig. 8. Upsampling results of our proposed method on real-scanned LiDAR point clouds. We magnify some cases (e.g., the vehicles, the pedestrian, and the
cyclist), and our model can make point clouds denser and increase more geometrical details.

Besides quantitative results, we visualize the upsampling and
Poisson surface reconstruction results in Fig. 9. The setting
Ours (w/o Lv) tends to produce noisy and non-uniform point
sets, thus leads to more holes in the reconstructed surfaces. By
contrast, our proposed method can produce more fine-grained
details in the upsampled results and smoother surface, e.g.,
tiger’s leg and cow’s leg.

Besides, we evaluate the setting Ours (w/o LR), which
disables the loss calculation of the first upsampling module.
There is no denying that the setting Ours (w/o LR) has a better
result in P2F and CD, but it can not consider the output of
every iteration that introduce more artifacts reflected in Fig. 10.
Since each iteration parameters are shared, this training way
tries to obtain a better final output and does not consider the
middle outputs. Hence, the points from the middle stages may
contain some noises. To improve the quality of reconstruction
after every iteration, we constrict the outputs of every iteration
to have more generalization ability to upsample point clouds

with various sizes, as shown in Fig. 10. Comparing with
the result from the setting Ours (w/o LR), the output point
cloud of our proposed method has fewer artifacts. Due to the
constraint of outputs of every stage, the model has a chance
to correct the mistakes introduced in earlier stages. Besides,
progressive point cloud upsampling is necessary to capture
more local details because our model would adjust the scope
of receptive fields according to the spatial span of the input.

V. CONCLUSIONS

In this paper, we have proposed a differentiable rendering
based point cloud upsampling framework, which exploits local
and global structure for progressive point cloud upsampling.
Specifically, the down-feature operator of our proposed Up-
UNet feature expansion module can extract key point features
by removing the outliers, while the up-feature operator can
expand the point features uniformly via the grid-based folding
approach. With the constraint of the hybrid loss function,

SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR IEEE JOURNALS 11

(a) w/o Lv (b) with Lv

Fig. 9. The surface reconstruction of models trained without and with the
rendering loss. (a) the result of the model without Lv , and (b) the result of
the model with Lv .

our proposed method can improve reconstructed point cloud
data quality. Finally, we demonstrated the effectiveness of our
proposed model on different tasks via extensive experiments.

REFERENCES

[1] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics:
The KITTI dataset,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1231–1237, 2013.

[2] S. Song, S. P. Lichtenberg, and J. Xiao, “SUN RGB-D: A RGB-D scene
understanding benchmark suite,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 567–576.

[3] A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and
M. Nießner, “Scannet: Richly-annotated 3D reconstructions of indoor
scenes,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 5828–5839.

[4] R. Mekuria, K. Blom, and P. Cesar, “Design, implementation, and
evaluation of a point cloud codec for tele-immersive video,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 27,
no. 4, pp. 828–842, 2016.

[5] H. Zhou, K. Chen, W. Zhang, H. Fang, W. Zhou, and N. Yu, “DUP-
Net: Denoiser and upsampler network for 3D adversarial point clouds
defense,” in Proceedings of the IEEE International Conference on
Computer Vision, 2019, pp. 1961–1970.

[6] X. Wang, J. He, and L. Ma, “Exploiting local and global structure for
point cloud semantic segmentation with contextual point representa-
tions,” in Advances in Neural Information Processing Systems, 2019,
pp. 4573–4583.

[7] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas, “Learning rep-
resentations and generative models for 3D point clouds,” in International
Conference on Machine Learning, 2018, pp. 40–49.

[8] X. Huang, J. Zhang, Q. Wu, L. Fan, and C. Yuan, “A Coarse-to-Fine
algorithm for matching and registration in 3D cross-source point clouds,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 28, no. 10, pp. 2965–2977, 2018.

[9] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “PU-Net: Point
cloud upsampling network,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2018, pp. 2790–2799.

[10] R. Li, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “PU-GAN:
A point cloud upsampling adversarial network,” in IEEE International
Conference on Computer Vision, 2019, pp. 7203–7212.

Fig. 10. Visualization of point clouds with different upsampling ratios (2×,
4×, 8×, 16× and 32×). The first point cloud is generated by the model
without the middle reconstruction loss, so compared with the second point
cloud, it does not have a clear structure. The rest point clouds are from the
same input with different upsampling ratios. It is thus clear that our model
can achieve progressive upsampling.

[11] Y. Qian, J. Hou, S. Kwong, and Y. He, “PUGeo-Net: A geometry-centric
network for 3D point cloud upsampling,” Proceedings of the European
Conference on Computer Vision, pp. 752–769, 2020.

[12] Y. Zhang, X. Tuo, Y. Huang, and J. Yang, “A tv forward-looking super-
resolution imaging method based on tsvd strategy for scanning radar,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 7,
pp. 4517–4528, 2020.

[13] H. Huang, D. Li, H. Zhang, U. Ascher, and D. Cohen-Or, “Consol-
idation of unorganized point clouds for surface reconstruction,” ACM
Transactions on Graphics, vol. 28, no. 5, pp. 1–7, 2009.

[14] M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, G. Guennebaud,
J. A. Levine, A. Sharf, and C. T. Silva, “A survey of surface reconstruc-
tion from point clouds,” in Computer Graphics Forum, vol. 36, no. 1,
2017, pp. 301–329.

[15] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Surface reconstruction from unorganized points,” in Proceedings of
the 19th Annual Conference on Computer Graphics and Interactive
Techniques, 1992, pp. 71–78.

[16] Y. Wang, S. Wu, H. Huang, D. Cohen-Or, and O. Sorkine-Hornung,
“Patch-based progressive 3D point set upsampling,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 5958–5967.

[17] G. Qian, A. Abualshour, G. Li, A. Thabet, and B. Ghanem, “PU-
GCN: Point Cloud Upsampling using Graph Convolutional Networks,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021.

[18] S. Ye, D. Chen, S. Han, Z. Wan, and J. Liao, “Meta-pu: An arbitrary-
scale upsampling network for point cloud,” IEEE Transactions on
Visualization and Computer Graphics, 2021.

[19] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“KinectFusion: Real-time dense surface mapping and tracking,” in 2011
10th IEEE International Symposium on Mixed and Augmented Reality,
2011, pp. 127–136.

12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, JULY 2021

[20] A. Tagliasacchi, H. Zhang, and D. Cohen-Or, “Curve skeleton extraction
from incomplete point cloud,” in ACM SIGGRAPH 2009 papers, 2009,
pp. 1–9.

[21] R. Schnabel, R. Wahl, and R. Klein, “Efficient RANSAC for point-cloud
shape detection,” in Computer Graphics Forum, vol. 26, no. 2, 2007, pp.
214–226.

[22] C. R. Qi, L. Yi, H. Su, and L. J. Guibas, “PointNet++: Deep hierarchical
feature learning on point sets in a metric space,” in Advances in Neural
Information Processing Systems, 2017, pp. 5099–5108.

[23] E. Insafutdinov and A. Dosovitskiy, “Unsupervised learning of shape
and pose with differentiable point clouds,” in Advances in Neural
Information Processing Systems, 2018, pp. 2802–2812.

[24] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T.
Silva, “Computing and rendering point set surfaces,” IEEE Transactions
on Visualization and Computer Graphics, vol. 9, no. 1, pp. 3–15, 2003.

[25] Y. Lipman, D. Cohen-Or, D. Levin, and H. Tal-Ezer, “Parameterization-
free projection for geometry reconstruction,” ACM Transactions on
Graphics, vol. 26, no. 3, pp. 22–es, 2007.

[26] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “EC-Net: An
edge-aware point set consolidation network,” in Proceedings of the
European Conference on Computer Vision, 2018, pp. 386–402.

[27] J. Lin, X. Shi, Y. Gao, K. Chen, and K. Jia, “Cad-pu: A curvature-
adaptive deep learning solution for point set upsampling,” arXiv preprint
arXiv:2009.04660, 2020.

[28] H. Son and Y. M. Kim, “Saum: Symmetry-aware upsampling module
for consistent point cloud completion,” in Proceedings of the Asian
Conference on Computer Vision, 2020.

[29] Z. Huang, Y. Yu, J. Xu, F. Ni, and X. Le, “PF-Net: Point fractal network
for 3D point cloud completion,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
7662–7670.

[30] W. Yuan, T. Khot, D. Held, C. Mertz, and M. Hebert, “PCN: Point
completion network,” in 2018 International Conference on 3D Vision,
2018, pp. 728–737.

[31] L. Pan, “ECG: Edge-aware point cloud completion with graph convolu-
tion,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4392–
4398, 2020.

[32] X. Wang, M. H. Ang Jr, and G. H. Lee, “Cascaded refinement network
for point cloud completion,” in Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2020, pp. 790–799.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[34] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2017, pp. 4700–4708.

[35] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in International Conference
on Medical Image Computing and Computer-assisted Intervention, 2015,
pp. 234–241.

[36] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3D classification and segmentation,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 652–660.

[37] M. M. Loper and M. J. Black, “OpenDR: An approximate differentiable
renderer,” in European Conference on Computer Vision, 2014, pp. 154–
169.

[38] H. Kato, Y. Ushiku, and T. Harada, “Neural 3D mesh renderer,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 3907–3916.

[39] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen, “Differentiable monte
carlo ray tracing through edge sampling,” ACM Transactions on Graph-
ics, vol. 37, no. 6, pp. 1–11, 2018.

[40] W. Yifan, F. Serena, S. Wu, C. Öztireli, and O. Sorkine-Hornung,
“Differentiable surface splatting for point-based geometry processing,”
ACM Transactions on Graphics, vol. 38, no. 6, pp. 1–14, 2019.

[41] S. Liu, T. Li, W. Chen, and H. Li, “Soft Rasterizer: A differentiable
renderer for image-based 3D reasoning,” in Proceedings of the IEEE
International Conference on Computer Vision, 2019, pp. 7708–7717.

[42] C.-H. Lin, C. Kong, and S. Lucey, “Learning efficient point
cloud generation for dense 3D object reconstruction,” arXiv preprint
arXiv:1706.07036, 2017.

[43] R. Roveri, A. C. Öztireli, I. Pandele, and M. Gross, “PointProNets:
Consolidation of point clouds with convolutional neural networks,” in
Computer Graphics Forum, vol. 37, no. 2, 2018, pp. 87–99.

[44] G. Liu, D. Ceylan, E. Yumer, J. Yang, and J.-M. Lien, “Material editing
using a physically based rendering network,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 2261–2269.

[45] T. H. Nguyen-Phuoc, C. Li, S. Balaban, and Y. Yang, “RenderNet:
A deep convolutional network for differentiable rendering from 3D
shapes,” in Advances in Neural Information Processing Systems, 2018,
pp. 7891–7901.

[46] S. Tulsiani, T. Zhou, A. A. Efros, and J. Malik, “Multi-view supervision
for single-view reconstruction via differentiable ray consistency,” in
Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, 2017, pp. 2626–2634.

[47] P. Hermosilla, T. Ritschel, P.-P. Vázquez, À. Vinacua, and T. Ropinski,
“Monte carlo convolution for learning on non-uniformly sampled point
clouds,” ACM Transactions on Graphics, vol. 37, no. 6, pp. 1–12, 2018.

[48] H.-T. D. Liu, M. Tao, and A. Jacobson, “Paparazzi: surface editing by
way of multi-view image processing.” ACM Trans. Graph., vol. 37, no. 6,
pp. 221–1, 2018.

[49] V. Sitzmann, M. Zollhöfer, and G. Wetzstein, “Scene representation
networks: Continuous 3D-structure-aware neural scene representations,”
in Advances in Neural Information Processing Systems, 2019, pp. 1121–
1132.

[50] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing scenes as neural radiance fields
for view synthesis,” in Proceedings of the European Conference on
Computer Vision, 2020, pp. 405–421.

[51] Y. Yang, C. Feng, Y. Shen, and D. Tian, “Foldingnet: Point cloud
auto-encoder via deep grid deformation,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp. 206–
215.

[52] Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, “ECA-Net:
Efficient channel attention for deep convolutional neural networks,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2020, pp. 11 534–11 542.

[53] X. Wang, R. Girshick, A. Gupta, and K. He, “Non-local neural net-
works,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 7794–7803.

[54] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 7132–7141.

[55] S. Woo, J. Park, J.-Y. Lee, and I. So Kweon, “Cbam: Convolutional
block attention module,” in Proceedings of the European Conference on
Computer Vision, 2018, pp. 3–19.

[56] H. Fan, H. Su, and L. J. Guibas, “A point set generation network for
3D object reconstruction from a single image,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 605–613.

[57] “Visionair,” [Online; accessed on 14-November-2017].
[58] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,

Z. Li, S. Savarese, M. Savva, S. Song, H. Su, et al., “ShapeNet:
An information-rich 3D model repository,” arXiv preprint
arXiv:1512.03012, 2015.

[59] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in 3rd International Conference on Learning Representations, 2015.

[60] M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, and C. T. Silva, “A
benchmark for surface reconstruction,” ACM Transactions on Graphics,
vol. 32, no. 2, pp. 1–17, 2013.

[61] J. Zhang, W. Chen, Y. Wang, R. Vasudevan, and M. Johnson-Roberson,
“Point set voting for partial point cloud analysis,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 596–603, 2021.

[62] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and M. Aubry,
“A papier-mâché approach to learning 3d surface generation,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, June 2018.

[63] L. P. Tchapmi, V. Kosaraju, H. Rezatofighi, I. Reid, and S. Savarese,
“Topnet: Structural point cloud decoder,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp. 383–
392.

[64] H. Xie, H. Yao, S. Zhou, J. Mao, S. Zhang, and W. Sun, “GRNet: Grid-
ding residual network for dense point cloud completion,” in Proceedings
of the European Conference on Computer Vision, 2020, pp. 365–381.

	INTRODUCTION
	Related Work
	Point Cloud Processing
	Point-based Functional Module
	Differentiable Rendering

	Proposed Model
	Contextual Representation Module
	Upsampling Module
	Up-feature Operator
	Down-feature Operator

	Loss Function

	Experimental Results
	Experimental Settings
	Datasets
	Implementation Details
	Evaluation Metrics

	Comparisons with the State-of-the-Art Methods
	Point Cloud Upsampling
	Point Cloud Denoising
	Point Cloud Completion

	Upsampling Real-scanned Data
	Ablation Study
	Up-UNet Feature Expansion Module
	Hybrid Loss

	CONCLUSIONS
	References

