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Abstract—Digital images in real world applications typically
undergo a wide variety of quality degradations before com-
pression or re-compression. Existing learning based codecs are
typically data-driven, relying on the predefined compression
pipeline with pristine or high quality images as the input.
However, the images in the wild may exhibit the substantially
different characteristics compared to the high quality images,
casting major challenges to the learning based image coding.
In this paper, we propose a robust noisy image compression
framework with the blind assumption on the specific noise
type and level. The specifically designed encoder decomposes
the representation of visual content into two types of features,
including the Features that represent the Intrinsic Content (FIC)
and the Features that account for Additive Degradation (FAD).
As such, beyond the philosophy of faithfully reconstructing the
given image with high fidelity, only FIC needs to be compactly
represented and conveyed. The principled disentanglement strat-
egy facilitates the removal of the redundancy from multiple
perspectives (e.g., spatial, channel and content), ensuring the
handling of a wide variety of noisy images in the wild. Extensive
experimental results show that our model can achieve superior
performance in terms of the ultimate quality and exhibit the
strong generalizability across images degraded by a variety of
means. The proposed scheme also points out a new research
avenue on learning based compression for images in the wild,
which is technically challenging but desirable in practice. Code:
https://github.com/ppingzhang/NoisyIC.git

Index Terms—End-to-end image compression, noisy images in
the wild, generalization capability

I. INTRODUCTION

END-to-end image compression has been making great
progress benefiting from the data-driven deep neural

networks in representing visual signals [1], [2]. However,
before compression or re-compression, each stage in image
acquisition and processing may introduce quality degradation.
Existing end-to-end image codecs typically guarantee the
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fidelity between input and decoded images, while the gaps
between pristine images and input images due to various
types of corruption have been largely ignored. In fact, such
corruption type and level are often unknown, and many causes
may lead to quality degradations. Nevertheless, little work has
been dedicated to compressing the images in the wild, and
even less has been devoted to end-to-end compression of such
images.

One major challenge in compressing the images in the wild
lies in that the preservation of the high frequency information
may involve undesirable from the input images. Typically,
when optimizing the fidelity between the compressed and
input images, noise is prone to be preserved as valuable
information in high bit-rate compression. As a consequence,
there is a typical phenomenon that the image quality cannot be
improved with the increase on coding bits [3], [4]. Therefore,
there is a consensus that the intrinsic content should be
well preserved while the annoying artifacts are better to be
removed. Various preprocessing techniques [5]–[8] attempt
to restore the pristine images by removing the artifacts and
enhancing the quality. However, such preprocessing heavily
relies on the accurate identification of corruption patterns and
effective preprocessing with diversified deep learning models.
Moreover, the preprocessing is often independent of rate-
distortion optimization (RDO) in end-to-end coding, while
it may significantly influence the coding bits as well as the
perceived quality.

From the above analyses, in this paper, we focus on the
compression of the noisy images in the wild for the following
reasons. First, during acquisition, the images may be contam-
inated by different types of noise due to certain constraints of
lighting conditions, sensors and exposure conditions. Second,
the compression of noisy image is more challenging, as the
high frequency noise is typically preserved, degrading the
final image quality and simultaneously increasing the coding
bits. To compress such images, in particular the images
with authentic noise, there are two desired properties of the
codec, including the capability in reducing redundancy and the
feasibility in representing the intrinsic content. In principle,
both require an efficient transform, which motivates us to
propose a learning-based compression model based on the
principle of representing the input visual signals with the
Features that represent the Intrinsic Content (FIC) and the
Features that account for Additive Degradation (FAD). To
this end, we focus on the end-to-end compression of noisy
images in the wild and propose a universal and robust image
compression framework, achieving the compact representation

https://github.com/ppingzhang/NoisyIC.git
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of features and disentangling FIC and FAD from coarse to
fine. Meanwhile, our model is featured with low encoding
and decoding complexity. Moreover, the decoding speed is
faster than the encoding speed due to the adoption of an
asymmetric encode-decode architecture, which significantly
reduces network parameters and accelerates the inference
speed, revealing potential benefits in real-world applications.
Overall, the main contributions of this paper are summarized
as follows,

• We propose a learning based compression scheme for
noisy images in the wild, based on the principle of the
redundancy removal and efficient intrinsic visual content
representation.

• We propose to disentangle the visual representation into
the FIC and FAD features, where the FIC features account
for the content to be preserved and the FAD features need
to be effectively removed.

• Extensive experiments and analyses verify the effective-
ness of our model, which delivers better rate-distortion
(RD) performance on different types of noisy images in
the wild compared to the state-of-the-art learning based
compression methods.

II. RELATED WORKS

A. Learning based Image Compression

Image compression targets at compactly representing image
signals to facilitate transmission and storage. Numerous im-
age compression standards have been developed in the past
decades, including the JPEG [9], the JPEG2000 [10], the
High Efficiency Video Coding (HEVC)/H.265 [11], and the
Versatile Video Coding (VVC)/H.266 [12]. The traditional
image coding paradigm is employed delicately with prediction,
transform coding and entropy coding modules to eliminate
redundancies existing in image data, and accurate entropy
estimation benefits the optimization of codecs, such that the
overall framework is optimized with the RDO.

In contrast with the traditional transform, e.g., discrete
cosine transform (DCT), discrete Fourier transform (DFT) and
discrete wavelet transform (DWT), the learning-based methods
facilitate the compact representation of visual signals in a
data driven manner. Benefiting from the capacity of deep
learning models, recent years have witnessed the tremendous
development of deep-learning based transform coding. These
researches have revealed that neural networks are capable of
nonlinear modelling of visual signals. Ballé et al. [1] proposed
a nonlinear transform-based end-to-end image compression
framework with generalized divisive normalization (GDN) to
model image content, which shows an impressive capacity for
image compression. Subsequently, several end-to-end image
compression algorithms have been proposed by transforming
the input into a latent code. A convolutional neural network
(CNN) model is designed as a deep learning-based transform
[13] to achieve better decorrelation and energy compaction. In
addition, attention modules [14] are introduced to strengthen
the transform capabilities of the compression algorithm in
order to obtain higher compression performance.

Entropy estimation serves as an important step in learning-
based image compression. The commonly-used factorized en-
tropy model [1] is based on the hypothesis that the individual
latent representation is independent, though this condition is
difficult to be guaranteed. The hyperprior network [15] has
been proposed to extract side information from the latent
representation, which can represent latent distributions and
enhance the latent coding entropy estimation, improving over-
all coding performance. Inspired by the success of autore-
gressive priors in probabilistic generative models, Minnen et
al. [16] proposed to combine the spatial context model with
a hyperprior for conditional entropy estimation in order to
improve conditional entropy estimation. The context model
is used to predict the likelihood of unknown codes based on
previously decoded latent representation. However, even when
processing relatively small images, it is evident that a serial
context model is time-consuming in encoding and decoding.
To address the above problem, Hu et al. [17] proposed a
coarse-to-fine entropy model to reduce redundancy in the latent
representation, and it enjoys much faster decoding speed than
the context based model.

B. Corrupted Image Compression

Due to the absence of pristine images in real-world appli-
cations, efforts have been devoted to distorted image/video
compression [3], [4], [18]. The conventional solution is to
preprocess before compression, e.g., filtering the noise. As
a result, these algorithms consider preprocessing and com-
pression as separate operations but ignore the advantage of
joint optimization. Chen et al. [4] built the relationship of
the lower bound quantization parameter (QP) and the noise
variance. In this manner, it can simultaneously perform rate
control and video denoising with a lower bound QP constraint.
Subsequently, Li et al. [3] investigated the properties of rate-
distortion performance and proposed a pre-analytical model
based on deep learning to denoise images with the end-to-end
compression framework. Moreover, they proposed a new data-
driven technique for defending noisy input without previous
knowledge of the noise level. However, they did not provide
a solution for compressing distorted images from distinct
domains. The modeling of the images in the wild, as well as
the quality assessment, are still very challenging tasks [19].
JPEG AI targets to develop a learning-based image coding
standard, which achieves compact representation for human
viewing and support a wide range of applications. Moreover,
the JPEG-AI call for proposals also take the compressed-
domain denoising into consideration as a task [20].

C. Domain Generalization and Contrastive Learning

Domain generalization has received increasing attention in
recent years, and many solutions have proposed, e.g., domain
alignment [21], data augmentation [22], learning disentangled
representations [23], [24]. An intuitive way to achieve dis-
entangled representation learning is to decompose a model
into two parts: domain-specific and domain-agnostic. Based
on SVMs, Khosla et al. [25] decomposed a classifier into
domain-specific biases and domain-agnostic weights, and only
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Fig. 1. Illustration of the encoding and decoding framework. In the encoder, given an input image, it is first transformed into the representation of FIC and
FAD. Only FIC needs to be compactly represented and conveyed. In the decoding phase, after the bitstreams are decoded, the compact features are projected
to the standard image representation via four synthetic modules.

maintained the latter one when dealing with unseen domains.
This approach was later extended to neural networks in [23].
Moreover, one can also design domain-specific modules such
as [26] where domain-specific binary masks are imposed on
the final feature vector to distinguish between domain-specific
and domain-invariant components.

Obviously, learning domain invariant representations is cru-
cial in domain generalization. Numerous types of distortion
may occur in the image in the wild. Many researchers in-
vestigate the invariant intrinsic properties of the image to
reconstruct clean images. Li et al. [23] proposed a conditional
invariant adversarial network which can guarantee the domain-
invariance property. Du et al. [27] proposed an adversarial
domain adaptation approach to develop robust representations
under feature and image domain restrictions for image restora-
tion. Inspired by the feature disentanglement, our work adopts
this design philosophy that input images are decomposed into
the FIC and FAD, where FIC is the domain-invariant compo-
nent and FAD is the domain-specific component. Therefore,
only FIC is compactly represented and conveyed for the final
reconstruction in the decoder.

Contrastive learning [28] learns representations by dis-
tinguishing positive and negative examples. Moreover, con-
trastive learning processes the data in feature spaces to facil-
itate the model optimization, leading to robust generalization
capability. The training objectives have been widely studied
in contrastive learning to improve the generalization capa-
bility. Contrastive loss [29] is one of the earliest training
objectives employed as the learning metric in a contrastive
fashion. Triplet loss [30] was originally proposed to learn face
recognition models of the same identity with different poses
and angles, and now it is a prevalent training objective applied
in various applications. Our work adopts the triplet loss as the
optimization objective to efficiently disentangle the FIC and
FAD.

Fig. 2. Illustration of the learning strategy for disentanglement of FIC and
FAD.

III. LEARNING BASED COMPRESSION SCHEME FOR NOISY
IMAGES IN THE WILD

A. Overview of the Compression Framework

The overall architecture of the proposed compression
scheme is illustrated in Fig. 1. Hence, in the encoder, given
an input image, it is first decomposed into the representations
including FIC and FAD. Herein, FIC (F c

j , j ∈ {1, 2, 3, 4})
equips the ability to characterize intrinsic visual information.
On the contrary, FAD (F d

j , j ∈ {1, 2, 3, 4}) refers to additive
degradation such as noise. To reliably disentangle features, FIC
is sequentially represented across four transform modules from
T1 to T4 with the assistance of the FAD, supplying more flex-
ibility and incorporating more variations than the single stage
method. Ultimately, only FIC is compactly represented and
efficiently compressed via the coarse-to-fine entropy model.
In the decoding phase, after the bitstreams are decoded,
the compact features are projected to the standard image
representation via four synthetic modules (Sj , j ∈ {1, 2, 3, 4}).

The proposed decomposition mechanism is rooted in the
widely accepted view that only the intrinsic visual information
that governs the visual perception and understanding needs
to be conveyed. Hence, to learn the disentangled FIC and
FAD, we form the training triplets each of which consists
three images, including a ground-truth image (Ip) as well
as two corrupted images (I1 and I2) from the same ground-
truth image with distinct distortion types. An effective strategy
to disentangle FIC and FAD is to pull the FIC closer, and
push away FIC against FAD, as illustrated in Fig. 2. To
this end, we first adopt four transform layers (denoted as
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T1 to T4 in Fig. 1) to decompose the F c
i,j (FIC) and F d

i,j

(FAD, i ∈ {1, 2}, j ∈ {1, 2, 3, 4}) from image Ii and the
design detail of our transform module will be described in
Sec.III.B. Subsequently, the triplet loss [30] is performed on
F c
i,j and F d

i,j , aiming to minimize the distance between F c
1,j

and F c
2,j while maximize the distance between F c

k,j and F d
l,j

(k, l ∈ {1, 2} and k ̸= l). In this manner, FIC and FAD
can be decomposed progressively, and only compact FIC is
compressed and conveyed to the decoder. Moreover, the design
philosophy of the decoder follows the principle of lightweight
and high efficiency, which employs a lightweight ResNet [31]
as the inverse transform module to reconstruct the images.

B. Multi-scale Disentanglement Encoder

The proposed multi-scale disentanglement encoder is capa-
ble of translating the images into the latent code characterized
by FIC. The advantages that account for the design philosophy
of the multi-scale disentanglement encoder are two-fold. On
the one hand, such a multi-scale decomposition strategy equips
the capability of gradually disentangling FIC from coarse
to fine. On the other hand, the multi-scale disentanglement
is efficient in characterizing the visual details at different
resolutions, thereby removing content, channel, and spatial
redundancies. Herein, the transform module is the main com-
ponent in the encoder.

The primary goal of the transform module is to remove
redundancy, project the features into a separable space and
extract the clean FIC. Our proposed transform module mini-
mizes feature redundancy, efficiently disentangles features, and
achieves a good compromise between rate and distortion. More
specifically, the transform module first maintains the FIC while
exploring more intrinsic contents. Then, the selective feature
structure is adopted to adjust the relationship of channels
to minimize channel redundancy. Finally, the features are
projected to a compact and separable space. The detailed
transform module is shown in Fig. 3. To extract the clean
FIC, F c

j is first processed via the residual attention module
(Atten-Res) [32], as shown in Fig. 4. Through the residual
structure in the Atten-Res module, the learned residual masks
can enhance FIC while suppressing the additive degradation.
Meanwhile, to explore more intrinsic contents, F c

j and F d
j with

the dimension of C ×H ×W are combined together via the
element-wise sum operation, where H and W represent the
height and width of the features, respectively, and C depicts
the channel number of features. Then, the global average
pooling operation is utilized to filter the noise. In this way, the
informative cues can be explored, such as the certain portion
of the intrinsic content, which can be mixed with FAD. In
this way, the informative cues can be explored again, such as
part of intrinsic contents, which are mixed with FAD and not
disentangled in the previous transform.

To reduce the channel correlation, we need to collect
information from each channel. As a result, an element-wise
sum operation is used to merge two parallel feature streams
(F̂ c

j and F̂ d
j ) as shown in Fig. 3. The weights of features

are then adjusted to obtain the compact representation in the
channel dimension. Inspired by [33], we adopt the selective

Fig. 3. The architecture of the transform module. The left table shows the
parameters of different layers, and the right table gives the detailed dimension
information of features.

Fig. 4. The architecture of the Atten-Res Module. The table provides the
parameters of layers.

feature structure to adjust features and reduce the channel
correlation. Specifically, two features (F̂ c

j and F̂ d
j ) are fused to

yield global feature descriptors with a global average pooling
operation over the spatial dimension to measure channel-wise
statistics. Subsequently, we employ a channel-downscaling
convolution layer to construct the compact feature repre-
sentation. Afterward, the feature vector passes through two
parallel channel-upscaling convolution layers and provides two
feature descriptors. The selective operator applies the Softmax
function to generate attention activations w1 and w2, such
that we can adaptively adjust the feature for a more compact
representation from the channel dimension. Herein, the whole
feature adjustment and aggregation procedure is defined as
U = w1 · F̂ c

j + w2 · F̂ d
j .

Following this, we project the features to a compact and
separable space via the convolution with a stride of 2. As
such, FIC and FAD can be extracted from different channels,
where we equally divide the features into FIC (F c

j+1 ∈
RC×H/2×W/2) and FAD (F d

j+1 ∈ RC×H/2×W/2).

The transform module decomposes FIC and FAD at a lower
spatial resolution from the previous layer. After four coarse-
to-fine transform operations, we can finally obtain the clean
and compact FIC.
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Fig. 5. Reconstruction of input images. We extract the compact representation
F c
i,4 and F d

i,4 after four transformations, and add the F c
i,4 and F d

i,4 together to
obtain the compact representation of the input Ii. Through four reconstruction
modules from R4 to R1, the image can be reconstructed as Îi.

C. Entropy Model

A fast and accurate entropy estimation model is critical
to the efficiency of the codec. Inspired by the coarse-to-
fine entropy model [17], we utilize a multi-layer conditioning
framework to estimate the probability of each symbol, which
can be described as follows,

PX(X) = PZ(Z)PY|Z(Y | Z)PX|Y(X | Y), (1)

where X is the latent representation after transformation,
and Y denotes a hyper representation extracted via the first
hyperprior encoding module (HE1). Herein, Y involves more
information to provide accurate conditional modelling. As a
result, an extra hyperprior coding module (HE2) is introduced
to extract a higher-level representation Z.

Assuming that the conditional distribution of each ele-
ment in X and Y follows the Gaussian distribution, the
probability estimation network predicts the mean and scale
of the Gaussian distribution, as shown in Fig. 1. More
specifically, HE1 contains three convolution layers appended
with leaky ReLU [34] layers except for the last convolution
layer. Analogously, HE2 consists of three convolution layers
appended with ReLU layers except for the last convolution
layer. Regarding the probability estimation of Z, the coarse-
to-fine model [17] assumes that the Z obeys the zero-mean
Gaussian distribution, of which the variance is a trainable
parameter. However, different images may possess distinct
characteristic. As such, employing a fixed distribution to model
Z is insufficient for representation. By contrast, the factorized
entropy model can well fit to arbitrary densities [1]. Thus,
we employ the factorized model instead of the zero-mean
Gaussian model to more precisely estimate the probability.
Finally, the rate model can be expressed as follows,

R = EX|Y[− log(PX|Y)]+

EY|Z[− log(PY|Z)] + EZ[− log(PZ)]. (2)

In particular, the hyperprior decoding modules (HD1 and
HD2) consist of two deconvolution layers with leaky ReLU
and ReLU operations, respectively. The final layer of HD1

and HD2 is the convolution layer, such that the hyperprior
decoder shares a symmetric structure with respective to the
hyperprior encoder.

D. Loss Functions

In summary, the rate-distortion (RD) loss function (LRD)
in our proposed method includes the feature disentanglement
loss LDIS , the content reconstruction loss LCR and the bitrate
(R) for the image encoding, which is given by:

LRD = LDIS + LCR +R. (3)

Regarding the LDIS , two input images I1 and I2 are utilized
for the FIC and FAD extraction and disentanglement. In
particular, the I1 and I2 share the same content while they are
corrupted by different noise types. The triplet loss Ltrp, which
has been widely adopted in contrastive learning, is employed
to disentangle FIC and FAD of each image. As shown in Fig. 2,
the Ltrp is given by,

Ltrp =
1

4

4∑
j=1

[∥∥F c
1,j − F c

2,j

∥∥
1
−

∥∥F c
1,j − F d

2,j

∥∥
1
+ α

]
+

+
1

4

4∑
j=1

[∥∥F c
2,j − F c

1,j

∥∥
1
−
∥∥F c

2,j − F d
1,j

∥∥
1
+ α

]
+
,

(4)

where α is a preset margin enforced between positive and
negative pairs. ∥·∥1 represents the L1-norm. F c

i,j and F d
i,j

(i ∈ {1, 2}, j ∈ {1, 2, 3, 4}) are the FIC and FAD decomposed
via j-th transform module from the i-th input image. With
Ltrp, the distance among FIC (F c

i,j) is minimized, while the
distances between F c

1,j and F d
2,j and between F c

2,j and F d
1,j

are maximized. To ensure the full content information are
extracted, the noisy image reconstruction loss Lnir is further
utilized. More specifically, as shown in Fig. 5, for the i-th
input noisy image, the extracted F c

i,4 and F d
i,4 are first added

and treated as the input of the reconstruction module (denoted
as R4 to R1 in Fig. 5). Then the reconstructed noisy image Îi
can be acquired by the pixel-wise loss defined as follows,

Lnir =
1

N

∥∥∥Î1 − I1

∥∥∥2
2
+

1

N

∥∥∥Î2 − I2

∥∥∥2
2
, (5)

where N is the number of pixels of each image and ∥·∥2
represents the L2-norm. As such, the LDIS consisting of Ltrp

and Lnir is given by,

LDIS = λtrpLtrp + λnirLnir, (6)

where λtrp and λnir are two parameters to adjust the weights
of the triplet loss and the noisy image reconstruction loss,
respectively.

Regarding the content reconstruction loss (LCR), we aim to
reconstruct the content information from the encoded FIC. In
particular, the ground-truth image (denoted as Ip) is introduced
and treated as the target image for the reconstruction quality
evaluation. Herein, instead of only using the widely used Mean
Squared Error (MSE) loss (denoted as Lmse) for supervision,
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(a) ReNoIR (b) Nam (c) PolyU

Fig. 6. Rate-distortion performance on the noisy images in the wild. The PSNR is obtained by the comparisons between ground-truth images and the decoded
images. The coding bits and PSNR are obtained by the average of all test images. The training dataset contains BSD500 with AWGN and SIDD.

the perceptual loss [35] (denoted as Lpc) is further adopted for
visually pleasant reconstruction, which is defined as follows,

Lpc =

2∑
i=1

5∑
k=1

∥∥ϕk (Ici )− ϕk (Ip)
∥∥2
2
, (7)

where ϕk means the k-th feature extractor in VGG19 [36], and
i is the index of the decoded image. As such, our LCR is a
combination of the Lmse and Lpc which is defined as follows,

LCR = λmse(Lmse(I
c
1 , Ip) + Lmse(I

c
2 , Ip)) + λpcLpc, (8)

where Ic1 and Ic2 are the decoded images from I1 and I2,
respectively. λmse and λpc are two hyper-parameters. In addi-
tion, as two corrupted images (I1 and I2) are involved in the
training phase, the bitrate constraint R in Eqn. (3) consists two
terms i.e., R1 and R2, which represent the bitrates consumed
by I1 and I2, respectively. Finally, the total RD loss defined
in Eqn. (3) can be rewritten as follows,

LRD = LDIS + LCR +R

= λtrpLtrp + λnirLnir + λmse(Lmse(I
c
1 , Ip)

+ Lmse(I
c
2 , Ip)) + λpcLpc +R1 +R2.

(9)

The whole network is trained in an end-to-end manner, ensur-
ing the overall optimized performance.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

1) Training and Testing Data: Regarding the training
data, the ground-truth and corresponding corrupted images
are formed as the triplet pairs. First, we adopt the images
from Flicker [37] and Berkeley Segmentation Data Set 500
(BSD500) [38] as ground-truth images, which are subse-
quently degraded by additive white Gaussian noise (AWGN)
with different levels (σ={1, 10, 20, 30, 40, 50}) for generating
synthetic noise images. Moreover, the Smartphone Image
Denoising Dataset (SIDD) [39] with the real noise images
and corresponding ground-truth images is also involved. In
particular, regarding SIDD, the ground-truth images as well
as the acquired noisy images captured by different cameras in
different lighting conditions form the triplet pairs. To prevent

over-fitting in the training phase, we also augment the datasets
via randomly flipping the images horizontally and vertically.

In the testing stage, we are particularly interested in the
compression performance of noisy images in the wild which
are authentically distorted. The real-world datasets, includ-
ing Nam [40], ReNoIR [41] and PolyU [42] are involved
for testing. In general, real-world noise images captured by
different devices are featured with multiple distortion levels
and different types of noise. The Nam [40] dataset includes
images which are captured by three cameras containing 11
static scenes. Each scene involves 500 JPEG images. For
evaluation, we employ the officially released sub-dataset of
Nam for testing, which contains 15 images with the resolution
512×512 patches. In addition, we include the ReNoIR dataset
in testing, which contains noisy-clean pairs. The noisy images
are obtained naturally from short-time exposure in low-light
scenes, and the clean counterparts are obtained from long-
time exposure of the same scene. Again, we center crop the
images to 1024×1024 patches and randomly select 20 pairs
for evaluation. The PolyU [42] dataset is also considered in
our experiment. The images in the PolyU dataset are captured
via five different cameras in 40 scenes, forming the noisy-
pristine pairs. The PolyU dataset provides a small bunch
dataset which is composed with 512×512 patches extracted
from the high-resolution images. We employ such small bunch
dataset in our experiment. In addition to these real-world
noisy images, we also attempt to compress the images with
synthetic noise. In particular, the images with synthetic noise
are generated with the Kodak dataset [43] and the AWGN
(standard deviations 15, 25 and 45). It is worth mentioning
that the noise levels characterized by the standard deviation in
training and test datasets are different. In addition, we employ
the complex noise models, e.g., heteroscedastic Gaussian [44]
ni ∼ N

(
0, α2xi + δ2

)
with α = 40 and δ = 10, and

Gaussian-Poisson [45], to generate the images with different
types of synthetic noise.

2) Training and Testing Settings: Regarding the experi-
mental settings, each training batch including eight patches
is extracted as inputs with the size of 256×256. Regarding
the settings of λtrp, λnir, λmse and λpc, λmse is set to
n × 255 wherein n ∈{1, 5, 20, 50}) corresponds to different
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(a) (b)

(c) (d)

Fig. 7. The rate-distortion performance for the synthetic noise images and ground-truth images. (a) Compression performance of images with Gaussian noise.
(b) Compression performance of images with Poisson and Gaussian noise. (c) Compression performance of images with Heteroscedastic Gaussian noise. (d)
Compression performance of ground-truth images. Again, the PSNR values are obtained based on the comparisons with the ground-truth images and the
decoded images.

bitrate points. Then, the parameters are set as: λnir = λmse,
λtrp = 0.1×λmse, and λpc = 0.5×λmse. Adam [46] is used
as the optimizer with default parameters, wherein the learning
rate is initialized as 1e-4. The network is implemented in the
PyTorch framework and trained with an NVIDIA Tesla V100
GPU.

In the testing phase, we choose five state-of-the-art com-
pression models for comparison, including the VVC test
model (VTM) [47], Cheng et al.’s [14], Coarse2Fine [17],
HyperPrior [15] and Minnen et al.’s [16]. Existing learning-
based codecs are trained with pristine images. For fair com-
pression, we retrain learning-based codecs, e.g., Cheng et
al.’s, Coarse2Fine, HyperPrior and Minnen et al.’s, with our
training dataset. To comprehensively evaluate the performance
of the proposed method, the preprocessing then compres-
sion paradigm is involved for comparison. More specifi-
cally, preprocessing is firstly conducted through a denoising
model MPRNet [48]. Subsequently, the denoised images are

compressed with the VTM (denoted as MPRNet-VTM) and
the learning-based codecs, including Cheng et al. (MPRNet-
Cheng) and Coarse2Fine (MPRNet-Coarse2Fine) network. For
other models without preprocessing, the training and testing
procedures are conducted under the same conditions. We
provide the rate-distortion performance, where the distortion is
obtained by comparing the decoded image against the ground-
truth image.

B. Performance Comparisons

1) Real-World Noisy Image Compression: The rate-
distortion performance of different datasets is shown in Fig. 6.
Typically, there are several observations. First, regarding the
results on the ReNoIR dataset, most methods perform poorly
due to the large gap of noise types between the training and
testing data, resulting in unsatisfactory capabilities on the
compression of images with unseen corruptions. Second, a
high-quality peak is observed on the Nam dataset, beyond
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(a) Images with real-world noise.

(b) Images with Gaussian noise (σ=45)

Fig. 8. The visualization of decoded images with different methods. (a) The ground-truth and noisy images are from the Nam [40] dataset. (b) The ground-truth
image is from the Kodak [43] dataset, and the noisy image is corrupted by Gaussian noise with σ=45.

which the increase of bitrate cannot be rewarded with better
coding quality. More specifically, MPRNet-Cheng performs
well at low bitrates. However, the rate-distortion performance
drops significantly with the increase of bitrates as more
noise is preserved. Third, preprocessing based codecs, such
as MPRNet-VTM and MPRNet-Coarse2Fine, cannot deliver
the promising performance. We have also shown the decoded
images with different methods in Fig. 8 (a). It is apparent that
the methods with preprocessing such as MPRNet-Coarse2Fine,
MPRNet-Cheng and MPRNet-VTM, may lead to the failure
since the poor generalization ability in the preprocessing.
By contrast, our model can produce relatively satisfactory
quality when compared with other codecs, e.g., Minnen et
al.’s and Cheng et al.’s under a similar bitrate level. The
advantage of our model compared with the “preprocessing-
VTM” scheme lies in that our model can process many kinds
of noisy images, no matter whether they are seen or unseen

in training. Our model shows the reasonable generalization
capability compared with the “preprocessing-VTM” scheme
since the prior knowledge on the noise type is better to be
incorporated into “preprocessing-VTM”.

2) Compression of Images with Synthetic Noise: Further-
more, we evaluate our model on the images with synthetic
noise. The testing dataset with Gaussian-Poisson noise and
Heteroscedastic Gaussian noise share certain similarities to
the training dataset with Gaussian noise. The rate-distortion
performance is illustrated in Fig. 7. Regarding the synthetic
Gaussian noise datasets which contain identical type of noise
with the training dataset, as the state-of-the-art denoising
method MPRNet can process the known noise type efficiently
especially at low noise levels, high compression efficiency is
achieved such as MPRNet-VTM. Moreover, it is interesting to
observe that most learning-based codecs cannot achieve satis-
factory performance in high bitrate coding scenario, whereas
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(a) Gaussian Noise (b) PolyU real noise dataset

Fig. 9. The rate-distortion performance comparisons in our ablation studies.

(a) F c
1 (b) F c

4

(c) F p
1 (d) F p

4

Fig. 10. Visualization of the sampled feature maps of F c
1 , F c

4 , F p
1 and F p

4 .
The first and second row are the feature maps extracted from the noisy image
and pristine image, respectively. The 3rd and 6th features are enlarged for
better visualization, and borders of the same color are the same feature map
with different sizes.

the proposed model could perform well, exhibiting stable
increases regarding the quality of the reconstructed images.
Similar trends could be observed on the Poisson and Gaussian
mixed noise datasets, as shown in Fig. 7 (b). In addition,
when encountering a new synthetic noise type such as the
Heteroscedastic Gaussian noise that is totally unseen in the
training data, the proposed model successfully surpasses the
VTM at high coding bitrate. Meanwhile, comparing with the
codecs without preprocessing, which may lack the capability
of disentangling the additive noise, the proposed method
consistently delivers promising results in both the low bitrate
and high bitrate coding scenarios. Regarding quality of the
decoded images, we visualize exemplified images degraded

by Gaussian noise with σ=45, which are compressed with
different models, as shown in the first row of Fig. 8 (b).
MPRNet-VTM achieves better PSNR results, whereas the
texture details may be distorted such as the details of the initial
letter, due to the excessive smoothness in the preprocessing
stage. The compression without preprocessing schemes could
reserve more fine details, and meanwhile preserve the noise.
As such, the proposed method strikes an excellent balance
in detail-preserving and noisy image compression, yielding
reconstructions with satisfactory quality.

3) Noise-free Image Compression: To evaluate the gener-
alization capability of our model, we adopt the pristine Kodak
dataset for testing, and the results are shown in Fig. 7 (d). It
can be observed that the VTM reveals remarkable compression
performance gain on the pristine images. The proposed model
surpasses the learning-based models, such as the Minnen et
al.’s [16], Cheng et al.’s [14], Coarse2Fine [17], and Hy-
perPrior [15]. Moreover, preprocessing based compression
methods perform well on these noise-free images as well. This
is explainable as the associated compression models are specif-
ically trained with preprocessed images, such that the noise-
free images could be effectively compressed. Nevertheless, our
proposed model achieves the close performance at the low bit-
rate compression and outperforms other learning-based codecs
without preprocessing.

C. Ablation Studies

To evaluate the efficiency of each component of our codec,
we conduct the ablation studies on the transform module, the
entropy model, and the objective function, respectively.

1) Transform Module: The designed transform module
aims for feature disentanglement and redundancy removal.
Herein, to verify its functionality, we ablate the transform
modules Ti (in Fig. 1) and replace them with the trivial
convolution layers. The ablation results are shown in Fig. 9
and we denote it as Ours (w/o Ti). Compared with our
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Fig. 11. The rate-distortion performance comparison of ablation results on
different entropy estimation methods, including hyperprior [15], context [16],
and coarse2fine [17] entropy models. All those entropy models share the same
backbone.

original method, we can observe the quality (in terms of
PSNR value) of the decoded images drops dramatically at
the same bitrate, revealing the unsatisfactory capability of
the redundancy removal led by the ablation of the transform
module. Moreover, as shown in Fig. 9(b), the ablation of the
transform module causes inferior performance on the PolyU
dataset, where the noise type is unseen in the training phase,
demonstrating the transform module plays a vital role in
enhacing the generalization capability.

To better understand the performance of the transform
module, in Fig. 10, we further visualize the FICs F c

j (j∈{1, 4})
that are extracted from a noisy image by the transform modules
Tj . More specifically, we rescale the FICs to the same spatial
size for better visual comparison and the first 8 feature maps
of F c

1 and F c
4 are exhibited in the Fig. 10 (a) and Fig. 10 (b),

respectively. We can observe that the F c
1 contains rich structure

and texture information while F c
4 is more complex and ab-

stract, revealing more compact representations acquired in F c
4 .

Moreover, the weak correlations among different channels of
F c
4 demonstrate that the channel redundancy can be effectively

eliminated by our transform module. In addition, compared
with the FIC F p

j (j∈{1, 4}) extracted from the pristine image
(as shown in Fig. 10 (c) and Fig. 10 (d)), the similarities
between F p

j and F c
j are significantly high, implying our

proposed multi-scale transformation can disentangle the FIC
component from the noisy image efficiently.

2) Entropy Model: In this subsection, we compare our
entropy model with various widely-used entropy models, in-
cluding the hyperprior entropy model [15], the context entropy
model [16] and the coarse-to-fine entropy model [17]. For
fair comparisons, we incorporate those entropy models in the
same backbone and the results are shown in Fig. 11. We
can observe the proposed entropy model estimates probability
distribution of the latent representations more accurately. It
should be noted that combining the context and our coarse-to-
fine model (denoted as Ours(context+#c2f) in Fig. 11) achieves

TABLE I
THE COMPARISON OF ENCODING AND DECODING TIMES (S).

Model Encoding time (s) Decoding time (s)
MRPNet-Coarse2Fine 0.241 0.395
MRPNet-VTM 98.688 0.106
MRPNet-Cheng 4.827 8.713
HyperPrior 0.041 0.034
Minnen et al. 4.750 8.713
Cheng et al. 4.804 8.922
Coarse2Fine 0.144 0.391
Ours 0.104 0.051

better results at the low bitrate, while the performance drops
dramatically when the bitrate increases, since the context noise
interferes the entropy estimation. In addition, the complexity
of the context combined strategy is significantly high, while
our entropy model is more efficient and outperforms the other
entropy models consistently.

3) Loss function: The main components of our objective
function include the triplet loss Ltrp, the noisy image re-
construction loss Lnir for feature disentanglement, and the
perceptual loss LCR for high-quality image decoding. In this
sense, to verify the effectiveness of each component, the
ablation studies are fairly conducted in this subsection. In par-
ticular, we first ablate the triplet loss Ltrp at different coding
bits. The results are shown in Fig. 9, where we can observe the
rate-distortion performance of Ours without Ltrp is inferior
to the proposed original model both on synthetic noise and the
real noise, demonstrating the Ltrp has a positive effect both on
the reconstruction accuracy and the generalization capability.
Furthermore, we ablate the noisy image reconstruction loss
Lnir and denote the results as Ours (w/o Lnir) in Fig. 9.
Consistently, a significant performance drop can be observed.
The reason lies in that the Lnir prevents the loss of content
information during the feature disentanglement. Subsequently,
we explore the importance of the perceptual loss Lpc by
ablating it in the training phase, i.e. only the Lmse is used
for the quality evaluation of the decoded image. The results
are denoted as Ours (w/o Lpc) in Fig. 9. We can easily find
that the PSNR values drop significantly at the high bitrate due
to the fact that Lpc can suppress noise in the high-level feature
space. Finally, we further ablate all components of objective
function except for the Lmse, R1 and R2 to study the collective
effect of Ltrp, Lnir and Lpc. The results are denoted as Ours
(only RD) in Fig. 9, from which, we can observe the ablation
model only performs well on the images corrupted by the
synthesized noise at the low bitrate and hardly generalized
well on the images distorted by real noise. In summary, from
the above analyses, we can conclude that each component of
our loss function serves a specific purpose in the proposed
method.

D. Encoding and Decoding Complexity Analysis

Herein, we evaluate the encoding and decoding complexity
on various compression schemes. The results are provided in
Table I, which compares the running time of the encoder and
decoder. It can be observed that the complexity of the proposed



SHELL et al.: BARE DEMO OF IEEETRAN.CLS FOR IEEE JOURNALS 11

method is moderate which enjoys low encoding and decoding
complexity compared with the most of the existing schemes.
Moreover, the preprocessing then compression schemes may
consume more time in encoding phase. It is also interesting to
observe that the VTM has the lowest decoding complexity.
However the associated encoding complexity is extremely
high owing to the delicate rate distortion optimization in the
encoding procedure. In addition, high encoding and decoding
complexity can be seen in the context based entropy coding
methods, such as the methods in Minnen et al. [16] and
Cheng et al. [14]. The proposed method gently rises the
encoding and decoding complexity when compared with the
HyperPrior [15] scheme. Meanwhile, it is worthy to mention
that the decoding speed of the proposed method is faster than
the encoding speed owing to the adoption of an asymmet-
ric encode-decode architecture, which significantly reduces
network parameters and accelerates the inference procedure,
revealing potential benefits in the real applications.

V. CONCLUSION

We have presented a novel image coding scheme for noisy
images in the wild. The novelty of the proposed scheme
lies in that the input image is distinctly represented with the
latent representations which could be subsequently divided
into the FIC and FAD, characterizing the intrinsic visual
content and additive degradation information that does not
need to be conveyed. The principled disentanglement scheme
excels at removing the redundancy of spatial, channel and
content, ensuring the handling of a wide variety of noisy
images in the wild. The superiority of the proposed scheme
is also demonstrated by the images with real-world noise and
synthetic noise, as well as the pristine images, demonstrating
the promising rate-distortion performance as well as the high
generalization capability.

As one of the first attempts on this emerging topic, there
are several limitations of the proposed method that could
be improved in our future work. First, since the proposed
method is based upon the statistics of natural images, it may
not properly generalize to the graphical images and artwork.
Developing new methodologies to identify noise in these types
of images is worth further investigation. Second, currently the
quality assessment of the compressed images is based upon
the PSNR between the pristine and distorted images. In the
future, how to faithfully evaluate the quality of the compressed
in the wild images may be further exploited. Third, since the
current method aims to preserve the intrinsic image content
in the compression domain, the optimal combination with the
pre-processing and post-processing strategies may also further
improve the coding performance. This opens up new space
for further exploration of efficiently compressing in the wild
images.
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