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ABSTRACT
In this paper, we propose a novel framework to exploit

and utilize the shared information in RGB-D data for effi-
cient depth map compression. Two main codecs, designed
based on existing end-to-end image compression network,
are adopted for RGB image compression and enhanced depth
image compression with RGB-to-Depth structure prior, re-
spectively. In particular, we propose a Structure Prior Fusion
(SPF) module to extract the structure information from both
RGB and depth codecs at multi-scale feature levels and fuse
the cross-modal feature to generate more efficient struc-
ture priors for depth compression. Extensive experiments
show that the proposed framework can achieve competitive
rate-distortion performance as well as RGB-D task-specific
performance at depth map compression compared with the
direct compression scheme.

Index Terms— Depth map compression, cross-modal,
feature fusion

1. INTRODUCTION

Various fields such as 3D reconstruction, autonomous driving,
virtual reality, and many visual analysis tasks have developed
rapidly with the support of RGB-D data. These practical ap-
plications need a massive volume of RGB-D data. With the
limitation of storage and bandwidth, the high efficient com-
pression for RGB-D data can reduce the volume of data and
improve data processing efficiency.

There are two different modals of data inner the RGB-D
image pair. RGB images usually contain rich texture con-
tents and color information, while depth maps are character-
ized by large smooth regions and sharp edges. In addition, the
pixel value of the RGB image represents the intensity of color,
while the depth one represents the distance between the cam-
era and the surface of the target object. As shown in Fig. 1
(a), due to the distinct properties of RGB images and depth
maps, the direct approach for RGB-D data compression is to
compress them independently. There is a range of efficient
techniques for RGB image compression including JPEG [1],

Fig. 1. The overview of the traditional RGB-D compression
pattern and our proposed framework. (a) Traditional RGB-D
compression pattern; (b) Enhanced depth map compression
with RGB-to-Depth structure priors.

JPEG2000 [2] and BPG [3]. These traditional codecs are
composed of several hand-crafted modules such as transform,
quantization and entropy coding, which are designed and op-
timized independently. Recently, the learning-based image
compression method has developed rapidly. Ballé et al. [4]
propose an end-to-end image compression framework with
generalized divisive normalization (GDN) [5], which shows
the great capability of redundancy reduction in image com-
pression. After that, Ballé et al. [6] further improve the previ-
ous work by adopting hyperprior to capture the redundancy
in latent as well as modeling the entropy as a conditional
Gaussian distribution. Recent studies [7–10] focus on propos-
ing more efficient entropy models to estimate the probabil-
ity distribution of latent, while others propose more powerful
transform architecture such as attention [10,11] and invertible
structures [12] to reduce the redundancies.

Various methods adopt the mature RGB codecs for depth
map compression. For instance, Pece et al. [13] transform the
single-channel depth map with high bit-depth into a standard
three channels color image to fit the codecs that do not sup-
port high bit-depth image. Other methods focus on enhancing
compression performance by preprocessing the depth map be-
fore compression by RGB codecs. For instance, Fu et al. [14]
and Panjaitan et al. [15] preprocess the depth data to suppress
spatial noises and rebuild the depth continuity for efficient
coding. However, these methods do not modify the codecs,
which are optimized based on RGB images without consid-



Fig. 2. An example architecture of our proposed depth map compression framework with three pairs of SPF modules.

ering the properties of depth maps. Furthermore, some ex-
isting learning-based RGB image compression methods can
compress the depth map as a gray-scale image with distor-
tion loss designed for depth maps. Although these methods
can achieve good performance, compressing RGB images and
depth maps separately ignores the redundancy between differ-
ent modal data, limiting the compression performance.

Another type of approach improves the depth map com-
pression performance with the assistance of RGB informa-
tion. Farrugia et al. [16] extract contour correlation exist
between color and depth images for efficient compression.
Kazunori et al. [17] compressed the depth map with a trans-
formation matrix constructed from the given RGB image.
Georgiev et al. [18] compress depth map based on depth
down-sampling guided by color image segmentation. How-
ever, the methods with RGB guidance heavily rely on hand-
crafted features, which may lead to sub-optimal results.

As shown in Fig. 1 (b), in this paper, we propose a novel
framework based on the existing end-to-end image compres-
sion framework for RGB-D data to improve depth map com-
pression. Specifically, we exploit and utilize the structure in-
formation shared inner RGB-D data to reduce the cross-modal
redundancies in the depth map. The main contributions are
provided as follows.

• We propose a novel framework for RGB-D data to
improve the depth map compression by exploiting the
shared information inner RGB-D data.

• We propose a Structure Prior Fusion (SPF) module to
efficiently extract and fuse the structure information
from two different modals at multi-scale feature lev-
els, which efficiently reduces the redundancies across
modals for depth map compression.

• Experimental results show the effectiveness of our pro-
posed framework in terms of rate-distortion measure-
ments and RGB-D task-specific criterion.

2. APPROACH

The RGB modal and depth modal exist gaps since their prop-
erties are distinct. Meanwhile, they contain some similarities,
e.g., some edges of RGB images and depth maps reflect the
consistency of semantic information. Therefore, we propose
a novel depth map compression framework, which extracts
structure priors from both RGB and depth modals and fuses
them efficiently to improve depth map compression.

2.1. Depth Map Compression Framework

As illustrated in Fig. 2, our proposed depth map compression
framework is designed based on the end-to-end image com-
pression architecture, including encoder, decoder and entropy
model. The encoder and decoder share symmetric structure,
as the encoder consists of analysis modules for RGB images
(I) and depth maps (D), while the decoder contains synthe-
sis modules. Analysis modules serve as the function of the
compact latent extraction, while the synthesis modules aim to
decode the image signals. To illustrate the flexibility of our
framework, analysis modules can be from existing codecs,
e.g., Minnen(2018) [7] and Cheng(2020) [10]. Unlike the di-
rect compression pattern that ignores the shared information
inner RGB-D data, we further propose SPF modules working
on the encoder and decoder, which can exploit structure infor-
mation from both RGB and depth codecs at multi-scale fea-
ture levels to reduce the cross-modal redundancy inner RGB-
D pair. Entropy model [6, 7, 10] estimate the probability dis-
tributions of the latent for entropy coding.

Training of the compression model is progress in op-
timizing the following Rate-Distortion cost function J =
R + λLD, where R is the bitrate approximated by entropy
model, LD is the distortion measurement between the original
and output images. λ is the hyper parameter to adjust the rate-
distortion trade-off. We adopt the commonly used MSE as
distortion loss term for RGB image compression. However,
MSE is not suitable for optimizing the depth map compres-
sion since MSE causes over-smooth and blurry artifact [19],



leading fidelity degradation in edge regions. Instead, we
adopt the following distortion term LD introduced in [20]:

LD = α× Lre + λG × LG + λS × LSSIM , (1)

where the first term Lre is the pixel-wise L1 loss between
D and output D̂. α, λG and λS are the weights of different
distortion terms, and LG is the L1 gradients loss defined as:

LG(D, D̂) =
1

n

n∑
p

|Gh(Dp, D̂p)|+ |Gv(Dp, D̂p)|, (2)

where n is the number of pixels and Gh and Gv compute the
gradients differences in the horizontal and vertical directions,
respectively. LSSIM is a modified form of structural similar-
ity index measure (SSIM) [21] defined as LSSIM (D, D̂) =
1−SSIM(D,D̂)

2 .

2.2. RGB-to-Depth Structure Priors Learning

As for the RGB-D pair, due to the high consistency of view-
points of RGB and depth, the correlation that exists between
RGB and depth modal may provide a strong prior to help
compression. This motivates us to consider extracting the
cross-modal correlation and reducing redundancies in depth
map compression.

In order to exploit the structure correlation inner RGB-
D pair, we propose a module called SPF for structure prior
extraction and fusion. The SPF is embedded at the end of
each transform block, namely analysis and synthesis mod-
ules. We firstly use the Feature Extraction block, which is
composed of a 3×3 convolution layer and an activation layer,
to extract structure information from the RGB latent features.
The same operation is utilized in the depth codec to extract
guidance features for the following feature fusion. Then the
structure feature maps of two modals will be concatenated.
In the Feature Fusion block, the preliminary context is pre-
possessed by a channel-reduction 3 × 3 convolution and an
activation layer then reweighted with an attention-based ESA
block [22]. Then, the structure features from different modals
can be effectively selected and fused according to the im-
portance of content learned by the model via Feature Fusion
block. Finally, the reweighted features are transferred back to
depth codec as redundancy for reduction.

3. EXPERIMENTS

3.1. Dataset

All the models are trained and tested over the widely used
NYU Depth Dataset V2 (NYUv2) [23]. The color-depth
pairs, with a size of 640× 480, are captured from 464 scenes
via a Microsoft Kinect. We randomly select a subset which
contains 4800 pairs for training and 200 pairs for valida-
tion. We use the standard test set, including 654 pairs. All
the depth maps are inpainted to fill the missing values as

mentioned in [23] and evaluated with valid values by adopt-
ing a mask during testing following the setting in [24]. We
also augment the training data with a random crop of size
256× 256 as well as random horizontal and vertical flips.

3.2. Implementation

In the following experiments, we implement the proposed
framework based on mbt2018 [7] and cheng2020-attn [10]
models provided by CompressAI [25], denoted as Min-
nen+SPF and Cheng+SPF. Details of architecture are pre-
sented at supplemental materials1. There are two stages for
model training. We initially train the RGB codec for both
mbt2018 and cheng2020-attn at a certain bitrate. Then we
freeze the parameters of the RGB codec and further train
the SPF modules and the depth codec. For both stages, the
models are optimized using Adam optimizer with the initial
learning rate of 10−4 in the first 150 epochs and reducing to
10−5 for 50 epochs. In addition, α, λG and λS is empirically
set at 0.1, 1 and 1, respectively. The hyper parameter λ is
formulated as λ = 2552 × λ1. Specifically, we train a high
and low rate RGB model by setting λ1 as 0.05 and 0.005,
respectively. For each RGB model, λ1 is set from 0.0001
to 0.001 to meet various bitrate settings during training the
depth codec.

3.3. Evaluation

To measure the distortion of depth map compression, we use
the peak signal-to-noise ratio (PSNR) as well as the standard
six metrics used in depth estimation method [26], including
average relative error (REL), root mean squared error (RMS),
average log10 error and threshold accuracy (δ). Specially, we
set the threshold to 1.02 to demonstrate the distinction among
different methods more clearly. For standard six metrics eval-
uation, we scale the depth value to the real depth range from
0 m to 10 m. In addition, we also evaluate the compression
performance by the RGB-D task-specific metric. We adopt
ESANet [27] for RGB-D semantic segmentation and calcu-
late the segmentation metric mean intersection over union
(mIoU) for quantitative evaluation. We follow the 40-class
label setting of NYUv2 dataset and depth value normaliza-
tion as mentioned in [27]. Bits per pixel (bpp) is adopted
as the bitrate measurement. For PSNR, mIoU and threshold
accuracy metrics, the higher value indicates the better per-
formance. For the other distortion metrics, the lower value
represents the better result.

We compare our proposed methods with both traditional
codecs, including VVC [28], BPG [3] and JPEG2000 [2], and
learning-based methods, including Cheng et al. [10] and Min-
nen et al. [7]. The caparison methods follow the pattern of di-
rect compression, which is lack of SPF modules and ignores
the cross-modal redundancies inner RGB-D data. For the tra-
ditional codecs, JPEG2000 is adopted for 16-bit high dynamic

1https://github.com/mingfaichen/r2dcompression



Fig. 3. Quantitative evaluation results. The experiments are conducted under lossy RGB images with average bpp 0.6 and
average PSNR 38 dB.

Fig. 4. Comparison of visualization results. The first column
shows the lossy RGB image compressed at certain bitrate and
the ground truth segmentation result. The second to fourth
columns show the RGB-D segmentation results and normal
maps generated from original and compressed depth maps.

range images, while BPG and VVC are for 8-bit coding due to
their limitation of the bit-depth support. Specially, we use the
intra configuration provided by the VVC Test model (VTM)
to compress the single depth map.

3.4. Experimental Results

Fig. 3 shows the results of experiments conducted with high
rate RGB model. It’s observed that our proposed framework
outperforms other comparison methods at most of the eval-
uation metrics such as PSNR, δ1, REL, RMS and log10 er-
ror. In addition, Table 1 illustrates that our proposed frame-
work achieves 0.78 dB and 1.87 dB BD-PSNR gain as well
as 14.01% and 31.02% BD-Rate reduction in Minnen and
Cheng, respectively. This demonstrates that our proposed
framework can efficiently reduce the cross-modal redundancy
in the depth map compression while maintaining fidelity dur-

ing reconstruction. Regarding the task-specific metric mIoU,
our method surpasses other learning-based methods without
SPF modules at low bitrate. Since depth maps provide ge-
ometric information to RGB images in RGB-D segmenta-
tion, revealing the great importance of structure information
of depth maps in semantic segmentation. Our proposed SPF
module efficiently extracts complementary structure informa-
tion from the RGB codec, thus successfully preventing struc-
ture information from being severely destroyed during com-
pression at a low bitrate.

We further provide some visualization results for qualita-
tive performance comparison. Fig. 4 shows the semantic seg-
mentation result as well as the normal map generated from the
compressed RGB-D pair. The depth map compressed by our
proposed method obtains more precise segmentation at object
such as the bed, floor, chair and table. On the other hand, the
normal maps illustrate that our proposed method can preserve
more details at the boundaries of the objects. More results are
provided in supplemental materials.

Table 1. The BD-PSNR and BD-BR metrics between our
proposed framework and comparison method.

Comparison Method BD-PSNR(dB) BD-Rate(%)

Minnen + SPF vs. Minnen(2018) 0.78 -14.01
Cheng + SPF vs. Cheng(2020) 1.87 -31.02

4. CONCLUSION

In this paper, we propose a novel framework for depth map
compression. The SPF module is designed to extract and fuse
cross-modal structure information at multi-scale feature lev-
els. Experimental results indicate that our proposed method
effectively reduces the cross-modal redundancy and achieves
promising compression performance compared with direct
compression pattern.
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