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Abstract— This article proposes the scalable cross-modality
compression (SCMC) paradigm, in which the image compression
problem is further cast into a representation task by hierar-
chically sketching the image with different modalities. Herein,
we adopt the conceptual organization philosophy to model the
overwhelmingly complicated visual patterns, based upon the
semantic, structure, and signal level representation accounting
for different tasks. The SCMC paradigm that incorporates
the representation at different granularities supports diverse
application scenarios, such as high-level semantic communica-
tion and low-level image reconstruction. The decoder, which
enables the recovery of the visual information, benefits from
the scalable coding based upon the semantic, structure, and
signal layers. Qualitative and quantitative results demonstrate
that the SCMC can convey accurate semantic and perceptual
information of images, especially at low bitrates, and promis-
ing rate-distortion performance has been achieved compared
to state-of-the-art methods. The code will be available online
https://github.com/ppingzhang/SCMC.

Index Terms— Semantic image compression, cross-modality,
scalable coding.

I. INTRODUCTION

RECENT years have witnessed the exciting development
of machine learning technologies, which make the fully
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Fig. 1. The paradigm of SCMC. The hierarchical organization based upon
the semantic, structure and signal level representation forms the SCMC.
Specifically, the encoder and decoder consist of three layers, including the
semantic layer (E1 and D1), structure layer (E2 and D2) and the signal layer
(E3 and D3). These layers work coherently and seamlessly in SCMC.

data driven image compression solutions become possible [1],
[2], [3]. The main objective of image compression is to
maximize the ultimate utility of the reconstructed visual infor-
mation, given the constrained number of used bits. Central
to such a problem is the way in which the images can be
finally utilized. With the advance of computer vision, the
images, which excel at conveying the visual information,
can be understood and perceived in a variety of ways. The
semantic information, which is intrinsically critical in image
understanding, plays an important role in the visual informa-
tion representation. In particular, it enjoys several advantages,
including being compact to represent, friendly to understand,
as well as closely tied to visual signals. However, the semantic
information has been unfortunately ignored in current learning
based image representation models, in particular when the end-
to-end coding strategy converts the visual signals to the latent
code without sufficient interpretability. Li et al. [4] proposed a
cross-modal compression framework to achieve semantic com-
munication, but this approach essentially preserves semantic
consistency while the signal-level reconstruction has not been
fully considered.

Scalable compression has been proven to be an efficient
representation method by encoding the visual signals into
several layers [5], [6], [7], [8], [9]. As such, the decoding
of higher layers typically relies on the existence of lower
layers [7], [8], [9], [10]. More specifically, the compact feature
representation and visual signal compression can be naturally
incorporated into a unified scalable coding framework, based
upon the excellent reconstruction capability of deep learn-
ing models. Herein, we propose the scalable cross-modality
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compression scheme (SCMC), which transfers the visual sig-
nals into different modalities for representation. As shown
in Fig. 1, the SCMC scheme plays a bridging role between
semantic image understanding and image representation, with
the three specifically designed layers. First, extremely compact
representation can be achieved with the base layer that encodes
semantic information only. Second, between semantic under-
standing and visual signal reconstruction, geometric structures
(e.g., edges and ridges) are extracted, bridging their gap to
satisfy diverse demands. Such representation is essentially
based upon Marr’s Theory on the computational representation
framework [11], and lays the foundation for providing a
perceptually meaningful representation. Third, the signal-level
reconstruction is enabled in the third layer, enhancing the
robustness of the proposed compression scheme and providing
the faithful reconstruction with sufficient signal-level details.

The proposed SCMC enjoys several desired advantages,
including compact, flexible and high efficiency. In particular,
when only semantic information is required, the proposed
framework enables a natural base-layer representation with
very compact information conveyed. Moreover, each layer of
the scalable stream holds conceptually meaningful informa-
tion, enhancing the flexibility by decoding the subset layers
for a given task and enhancing the interpretability of the
bitstream. Finally, the interactions between different layers
and fusions of different layers, which are indispensable in
scalable representation, ensure the promising rate-distortion
performance.

The contributions of this paper can be summarized as
follows,

1) We propose a novel SCMC framework based upon
the semantic, structure and signal layers. Qualitative
and quantitative results demonstrate that our proposed
SCMC can convey accurate semantic, structure and sig-
nal level visual information with diverse configurations,
significantly promoting the compression performance.

2) We design the three layers representation in SCMC, fol-
lowing the conceptual organization and coherent design
philosophy in the scalable coding framework. The three
layers sequentially recover the visual information at
semantic, structure and signal levels, and such rep-
resentation architecture is expected to make profound
impacts on a broad range from image processing to
image understanding.

3) We develop the interaction strategy among the three
layers, ensuring that the decoding of higher layers is
supported by the existence of lower layers. As such,
the redundancy among layers can be efficiently removed
in the scalable image representation paradigm based
upon the solutions in aligning and fusing cross-modality
features.

II. THE PROPOSED SCMC FRAMEWORK

The proposed SCMC framework contains an encoder and
a decoder. Both of them consist of three layers, including
the semantic layer, structure layer and signal layer, to sup-
port high-level semantic communication and low-level image
reconstruction. The detailed design is shown in Fig. 1. The
encoder separately extracts semantic, structure, and signal

level representation via layered compression, yielding embed-
ded bitstreams. More specifically, the base layer is the seman-
tic layer, compressing the image data into the captions to
convey the semantic information with an ultra-low bitrate.
The structure layer, as the second layer, extracts the structure
information which is further compressed with the VVC [12].
The signal layer serves as the final layer, compressing sig-
nal representation based upon the existing learning-based
codec [1].

In the decoder, these bitstreams can be partially decoded to
obtain visual reconstruction from semantic, structure and sig-
nal perspectives. The semantic layer reconstructs the semantic
information from compact text descriptions. The structure
layer generates images by decompressing semantic bitstream
and structure bitstream, promoting the perceptual reconstruc-
tion of images. The signal layer as the final signal level
reconstruction is intrinsically based upon the reconstructed
images from the first two layers. The information from the
previous layer serves as conditional information, such that
this interaction strategy ensures that redundancy among layers
can be efficiently removed, leading to scalable cross-modality
image compression.

A. Semantic Layer

The semantic information extraction based upon the image
captioning lays the foundation for the base layer, which
could be represented in an extremely compact way. As such,
instead of extracting the semantic information at the receiver
given the corrupted image from the decoder, the proposed
scheme allows the high quality reconstruction of the semantic
information even at ultra-low bitrate. Moreover, based upon
the text-to-image (T2I) generation, the visual signals with
the same semantic information can be generated from the
base layer, although the signal level reconstruction cannot be
guaranteed. Thus, the heart of the base layer lies in image-
text-image (ITI) cross-modality translation, compression
and representation. More specifically, it is composed
of three submodules, including the image-to-text (I2T)
translation, lossless compression for text description, and the
T2I generation. In this paradigm, the I2T translation in the
encoder aims to compress the data from the signal domain into
a compact text description. Herein, we utilize an end-to-end
neural network which is capable of automatically generating a
reasonable description in plain English [13]. In comparison to
the visual signals, the text domain is semantically meaningful
and compact. However, statistical redundancy still exists such
that Huffman coding [14] is employed to remove statistical
redundancy in text compression. The T2I generation in the
decoder aims to reconstruct visual images with semantic
consistency, such that we leverage AttnGAN [15] to
reconstruct images from the text descriptions, providing the
semantically similar visual information.

B. Structure Layer

Following the insight of Marr’s theory [11], geometric
structures (e.g., edges and ridges) and stochastic textures
are two prominent components composing the visual scene.
As such, we compress the structure map of the input image I
into a bitstream with low bitrates and reconstruct the image Ist
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based on structures and semantic textures. In the encoder, the
structure information is extracted, and then compressed into
the bitstream.

In the decoder, we leverage a combined reconstruction
scheme of geometric structures and semantic textures from
the base layer to improve representation capability. This layer
contains three stages, including structure extraction and com-
pression, structure-semantic layer fusion, and image recon-
struction.

1) Structure Extraction and Compression: In the encoder,
the structural map of the input image I is obtained through
the Richer Convolutional Features (RCF) structure extrac-
tion [16]. RCF can fully exploit multiscale and multilevel
information of objects to encapsulate both semantic and fine
detail features, such that structure extraction could be both
accurate and efficient. More importantly, even though the
structure map extracted via RCF is compressed with a high
compression ratio, it is still able to maintain a good structure.
To compactly represent the structural information, we first
downsample structure maps by a factor of 2 and compress
the downsampled structural map via VTM with QP 50 under
all intra (AI) configurations, wherein the screen content coding
(SCC) tools [17] are enabled, due to the strong capability in
compressing screen content images with sharp and abundant
edges. Finally, we can obtain the bitstream of the structure
maps. On the decoder side, the reconstructed structure map Ie
and semantic texture map Ise are combined to facilitate the
generation of the perceptual reconstruction of this layer.

2) Structure-Semantic Layer Fusion: This operation con-
tains two stages, including aligning structure and semantic
features and fusing the aligned structure and semantic fea-
tures. Due to information inconsistency between semantically
generated texture from the base layer and structure, we convert
texture and structure maps into feature domains to align them
via a multi-scale alignment strategy.

After aligning the structure and semantic features, struc-
ture features are merged into aligned features after self-
calibrated convolution [18] via the element-wise addition.
Then, an upsampling module, including a convolution opera-
tion and a PixelShuffle operation [19] are performed. Follow-
ing feature upsampling, the spatial dimension is enlarged two
times. For better reconstruction of the details, the semantic
information and structure features are fused after adjusting
them via self-calibrated convolution for further improvements.
After self-calibrate convolution, the structure features per-
form the pixel-wise addition with aligned features to obtain
fusion features as the input of the next upsampling operation.
Through hierarchical calibration and fusion, we can obtain
more accurate semantic texture and structure features to con-
tribute to image generation.

3) Image Reconstruction: After a multi-scale fusion oper-
ation, the final reconstruction consists of two upsampling
operations and two residual blocks, where the residual block
is only composed of two convolution layers. As such, we can
generate an image with similar semantics and structure as the
input image.

To obtain perceptual reconstruction even at low bit rates,
we design a loss function to train the structure layer. The

generator G generates the image on the condition of the
semantic maps Ise and structure maps Ie. The discriminator
is then trained to distinguish the generated image Ist =

G (Ise, Ie) with the original image I . We train the network
with LSGANs [20] in an end-to-end manner.

To maintain the semantic consistency and optimize visual
quality, we introduce a new term, the DISTS [21] loss
(LDI ST S), to further enhance the connection between the
input image (I ) and the reconstructed image (Ist ). With the
enforcement of the L1 and LDI ST S , the intrinsic similarity
between the input images and the generated images is largely
improved, facilitating the conceptual representations.

Lre = λ1L1(I, Ist ) + λdLDI ST S(I, Ist ). (1)

As such, the objective function of the proposed framework is

G∗
= arg min

G
max

D
Ld(G(Ise, Ie), D(I ))

+ λgLg(G(Ise, Ie)) + Lre, (2)

where Ld and Lg are the discriminative and generative
loss [20]. λg , λ1 and λd are the weighting parameters to
balance each component, and we empirically set λg = 1,
λ1 = 10 and λd = 10.

After the end-to-end training, the structure layer combined
with the structure features extracts the texture information
from semantic images to promote image generation.

C. Signal Layer

Involving signal-level attributes (e.g., color and background)
is conducive to reconstructing original image signals. In the
signal layer, we concentrate on representing the signal-level
information. More specifically, the signal-level information is
delicately extracted from the input image I and compressed as
the bitstream at the encoder-side, conveying signal-level char-
acteristics. The decoder parses the bitstream, generating the
reconstructed image Isi with the assistance of the associated
structure information from the second layer. The framework
is constructed based on an existing learning-based codec [1].
In particular, it contains an encoding module E3, quantization
(Q), entropy coding (AE/AD) and decoding module D3. The
encoder module and entropy coding module share the identical
backbone with the existing learning-based codec [1], showing
the promising capability of image compression.

To obtain genuine signal representation, we propose to
improve the decoder by involving the initial structure-level
information in the image reconstruction during the decod-
ing process. The multi-scale structure features serve as the
conditional information in the decoder. More specifically,
multi-scale structure features are extracted from the decoded
structure maps Ie and the output of the structure layer Ist
via the Sobel operator. These structure features provide the
layout and detailed texture information to facilitate image
reconstruction. Subsequently, these structure features readjust
via self-calibrated convolution and fuse with signal features
through the fusion operation, which is identical to the fusion
block in the structure layer. In this manner, the conditional
information from the previous layer can be fully utilized to
promote signal compression performance.
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TABLE I
QUANTITATIVE RESULTS AT THE ULTRA-LOW BITRATE

The rate-distortion (RD) loss function (LRD) in this layer
includes the content reconstruction distortion Lmse and the
bitrate (R) for the image encoding [1], which is given by,

LRD = λLmse + R, (3)

where λ is the hyper-parameter to control the trade-off between
the bitrate and distortion.

III. EXPERIMENTS

A. Datasets

We adopt CUB-200-2011 dataset [22], which includes
200 bird species. The CUB-200-2011 is adopted due to the
fact that it is a popular dataset with caption information,
which could greatly facilitate the proposed task. The dataset is
divided into training and testing subsets. The training dataset
includes 8855 images with 160 bird species and the testing
dataset contains 2933 images with 40 bird species. Each
image is associated with 10 descriptions. In the following
experiments, the images are resized to 256 × 256.

B. Quality Evaluation Measures

Peak signal and noise rate (PSNR) is a widely-used metric in
compression and restoration tasks, We employ LPIPS [23] and
DISTS [21] as the quality evaluation measures. In particular,
a lower DISTS/LPIPS value indicates better quality. The
coding bitrate is evaluated as the bits per pixel (bpp).

C. Experimental Settings

The network is implemented in the PyTorch framework and
trained on NVIDIA GeForce RTX 3090 GPUs. We provide
detailed information regarding the experimental settings of
three layers.

1) Semantic Layer: This stage contains two training steps,
including training the I2T translation and the T2I generation.
For the I2T translation, we set the batch size to 128 and the
learning rate to 0.001 with 100 epochs. Images are randomly
cropped to 224 ×224. Other settings follow those in [13]. For
the T2I generation, we follow the settings of AttnGAN [15].

2) Structure Layer: We set the batch size to 16 and the
learning rate to 0.0001 with 200 epochs. Moreover, regarding
the compression of the structure maps, we adopt the VVC test
model (VTM-15.2) [12] of screen content coding (SCC) under
AI configuration, where the QP is set as 50.

3) Signal Layer: We employ the learning-based codec,
Ballé et al. [1], as the backbone. We set the batch size to
128 and the learning rate to 0.001 with 200 epochs. The λ is
set as 5×2t , where t is equal to {0, 2, 4, 6, 8}, corresponding
to different bitrate points.

D. Performance Comparisons

To verify the effectiveness of the proposed SCMC scheme,
the following image compression schemes are involved for
performance comparisons,

Fig. 2. Comparisons of the R-D performance wherein the LPIPS and DISTS
are employed as quality evaluation measure.

• JPEG: we use JPEG encoder with the quality factors QFs
= {1, 5, 10, 20, 30, 40}, corresponding to the compression
ratios from large to small.

• VVC (Intra): we employ the VVC test model (VTM-
15.2) [12] with quantization parameters QPs = {63, 57,
52, 42, 37, 32, 27, 22}, and higher QP corresponds to
lower bitrate.

• Ballé et al.’s method [1]: the training and testing strate-
gies follow those provided by CompressAI [24].

To evaluate the compression performance of the proposed
framework quantitatively, we compare the proposed ITI with
the JPEG, VTM, and Ballé et al.’s method. We compress all
the images in the testing set with different quality factors. The
Rate-Distortion (RD) performance comparisons are illustrated
in Fig. 2.

1) Compression Performance of the Semantic Layer: The
proposed semantic layer can achieve ultra-high compression
ratios with semantically promising texture reconstructions.
However, extremely low-bitrate compression is difficult to
attain when employing JPEG and Ballé et al.’s framework.
As shown in Fig. 2, “Ours-semantic layer” denotes the R-D
performance of the semantic layer in terms of the LPIPS and
DISTS. It is easy to observe that the proposed method has
close performance with VTM at the ultra-low bitrate, whereas
the proposed method outperforms VTM when evaluated with
DISTS. Meanwhile, we evaluate the quality of generated
semantic images on FID and IS, as shown in Table I. The
proposed model with lower bitrate compression can still bring
better FID and IS performance.

2) Compression Performance of the Structure Layer: The
structure layer compresses image data with the assistance
of the semantic texture and structure maps. The comparison
results of the structure layer are shown in Fig. 2, where
“Ours-structure layer” illustrates the R-D performance of the
structure layer in terms of the LPIPS and DISTS. The results
indicate the advantage of our method at low bitrates.

3) Compression Performance of the Signal Layer: The
signal layer is responsible for conveying signal-level visual
information with enhanced reconstructions. The quantitative
results regarding the R-D performance and visualization results
are shown in Fig. 2 and Fig. 3, respectively. The proposed
signal layer surpasses JPEG and Ballé et al.’s inferences of
LPIPS and DISTS. Fig. 3 illustrates the decoded images via
JPEG, Ballé et al.’s method, VTM, and Ours from left to right.
We can clearly observe blocking artifacts and color shifts when
using JPEG compression. Moreover, the reconstructed images
are blurred when employing Ballé et al.’s method. Regarding
VVC, images compressed with VTM exhibit noticeable block-
ing artifacts in the background regions. By contrast, owing
to the cooperation of the structure information, the proposed
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Fig. 3. Visual quality comparison on the decoded images. The values
below each image are bpp and DISTS values, where the lower DISTS value
represents the better reconstruction quality.

model provides satisfied visual quality with similar or even
smaller coding bits. Moreover, in terms of PSNR, the proposed
method is also superior to Ballé et al.’s method with 20.6%
BD-rate gains, though inferior to VVC (50.7% loss). This
is not surprising that the VVC focuses on the signal level
recovery during encoder optimization. More results can be
found in the supplementary material.

IV. CONCLUSION

In this paper, we have presented a novel SCMC framework
where a wide spectrum of novel functionalities has been
enabled, making the codec versatile for applications ranging
from semantic understanding to signal-level reconstruction.
The proposed layered bitstream can be truncated due to
the scalability design, and ideally, such a rate-scalable
method could meet the demands of diverse requirements. The
proposed coding architecture is intrinsically hierarchical, and
promising coding performance has been shown in a variety
of means, demonstrating the promise of SCMC in real-world
applications.

Herein, we took a certain viewpoint regarding how the
images could be represented by a variety of ways, ranging
from semantic level representation to signal level reconstruc-
tion. The message we are trying to send is not that the
proposed paradigm is superior to existing methods all through.
Rather, we hope to make the point that the proposed paradigm
could be an alternative but effective solution for specific
application domains. Moreover, though useful evidences have
been provided on the effectiveness of the cross-modality
coding paradigm, there remain spaces for further exploration.
In particular, it is highly expected that the coding paradigm can
adapt to various image contents with different resolutions, and
even be enhanced from the perspectives of scalability, interop-
erability, utility, and feasibility to meet the grand challenges
of compact data representation in a variety of visual-centered
applications.
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