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Progressive Point Cloud Upsampling via
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Abstract— In this paper, we propose one novel progressive
point cloud upsampling framework to tackle the non-uniform
distribution issue during the point cloud upsampling process.
Specifically, we design an Up-UNet feature expansion module
which is capable of learning the local and global point fea-
tures via a down-feature operator and an up-feature operator,
respectively, to alleviate the non-uniform distribution issue and
remove the outliers. Moreover, we design a hybrid loss function
considering both the multi-scale reconstruction loss and the
rendering loss. The multi-scale reconstruction loss enables each
upsampling module to generate a denser point cloud, while the
rendering loss via point-based differentiable rendering ensures
that the proposed model preserves the point cloud structures.
Extensive experimental results demonstrate that our proposed
model achieves state-of-the-art performance in terms of both
qualitative and quantitative evaluations.

Index Terms— Point cloud upsampling, point-based differential
rendering, feature expansion unit.

I. INTRODUCTION

RECENT years have witnessed dramatically increased
interest in point cloud based applications. However, due

to the hardware and computational constraints, 3D sensors
such as LiDAR often produce sparse, noisy and non-uniformly
distributed raw point cloud data [1]–[4]. Since the performance
of 3D vision tasks is highly influenced by the integrity of the
input point cloud data, improvement of the raw data quality via
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point cloud upsampling becomes an essential step to enable the
downstream applications, such as 3D object classification [5],
semantic segmentation [6], and shape reconstruction [7]–[11].

Compared with the traditional 2D image super-resolution
task, the point cloud upsampling task is more challenging.
First, unlike the 2D image with a regular sampling grid [12],
the raw point cloud is irregular, sparse, noisy and non-uniform.
Thus, the point cloud upsampling task aims to not only
produce a denser version, but also remove noise, protect
the structure and thereby generate a dense and uniformly
distributed point cloud. Second, the objectives of the point
cloud upsampling task are supposed to be application depen-
dent [5], [13]. As a point cloud set is only an intermediate
representation of the 3D scene, the generated points should be
informative and uniform to assist other applications, such as
surface reconstruction and view synthesis.

Numerous efforts [9], [10], [14]–[18] have been devoted to
investigating point cloud upsampling techniques to ensure the
consistency and integrity of point cloud data. The earlier works
focused on reconstructing a piece-wise smooth representation
of the original shape, and specialized priors have been incorpo-
rated to address the challenges from data imperfections [19]–
[21]. However, these priors may not always be appropriate, and
in practice, certain shapes may fail to adhere to these priors.
More recently, inspired by the success of point-based deep
learning [22], deep learning-based point cloud upsampling
techniques [9], [10] have attracted growing attention. Many
learning-based works attempt to reconstruct uniformly distrib-
uted points, which are located close to underlying surfaces.
For example, Yu et al. [9] proposed a repulsion loss in the
PU-Net to make points more uniformly. Li et al. [10] proposed
a uniform loss to generate point clouds with uniform distrib-
ution. However, these models largely ignore the local quality
of the reconstructed surface. Since point clouds are unordered,
existing loss functions can only measure the global quality of
dense point cloud data but cannot preserve the local quality of
reconstructed surfaces. Moreover, most models were designed
for a fixed upsampling ratio. To upsample with varying scales,
they need to train multiple models with pre-defined ratios.
Some models need to call numerous times because they break
upsampling into multiple small upsampling. For example,
a 4×-upsampling operation needs to be broken into two 2×
steps, so this model needs to be called twice. These methods
increase the model complexity, as well as the training and
testing time.
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To resolve the challenges, we propose a progressive point
cloud upsampling framework via the point-based differentiable
rendering, which tackles the non-uniform distribution issue of
the point cloud. Specifically, the proposed upsampling frame-
work consists of a contextual representation (CR) module
and a number of cascaded upsampling modules with shared
parameters. To support the progressively upsampling, our
model shares different resolution information both inside and
between upsampling modules, and each of them produces a
denser point cloud to achieve multi-scale upsampling. Inspired
by the concept of the point-based differentiable rendering [23],
a rendering loss is proposed to enforce the network to learn
the underlying geometry of a latent target object via measuring
the fidelity of synthesized images under different camera
poses. Accordingly, the error back propagates through the
differentiable renderer, so the network is capable of learning
the structure preserved features. We conduct extensive exper-
iments on a sparse, noisy and incomplete dataset to demon-
strate the effectiveness of our approach, aiming to generate
high quality dense and complete point clouds. As a result,
our approach leads to outstanding performance for the final
point cloud upsampling results surpassing the state-of-the-art
(SOTA) methods. Moreover, ablation studies and experimental
analyses demonstrate the intermediate benefits of our method.

In summary, the main contributions of this paper lie in the
following three folds.

1) We propose a flexible framework that can upsample
point cloud progressively to support multi-scale upsam-
pling. The proposed Up-UNet feature expansion unit
enables the model to learn global point features, remove
the outliers and alleviate the non-uniform issue.

2) We design a hybrid loss function considering both
multi-scale reconstruction loss and rendering loss. The
multi-scale reconstruction loss enables each upsampling
unit to output a denser point cloud, while the rendering
loss via the point-based differentiable rendering forces
the model to learn the structure preserved features.

3) Extensive experiments and analyses verify the effective-
ness of our approach on different point cloud tasks. The
proposed approach improves the quality of reconstructed
point cloud and outperforms the SOTA methods.

II. RELATED WORK

A. Point Cloud Processing

There are three typical point cloud processing tasks: point
cloud upsampling, point cloud denoising and point cloud
completion. From the aspect of optimization-based meth-
ods [13], [14], [24], [25], most of them consider vari-
ous shape priors to constrain the geometry reconstruction.
Alexa et al. [24] provided a framework to approximate a
smooth manifold surface defined by a set of points and resam-
pled the surface to generate an adequate representation of
the surface. Lipman et al. [25] introduced a Locally Optimal
Projection for surface approximation from point cloud data.
Huang et al. [13] modified and extended the LOP operator to
produce a clean and uniformly distributed point set endowed
with reliable normals. These traditional point cloud processing

methods mostly consider surface reconstruction. Due to the
excellent performance of deep learning, these traditional tasks
have a better outcome under this method. To generate uniform
dense point clouds, Yu et al. [26] presented EC-Net, which is
the first edge-aware network for consolidating point clouds.
PU-Net [9], PU-GAN [10] and MPU [16] can remove out-
liers and generate dense point clouds simultaneously. PUGeo-
Net [11] can compute normals for the original and generated
point clouds to improve the quality of the surface recon-
struction. To improve the surface approximation via point set
upsampling, Lin et al. [27] proposed CAD-PU to realize the
curvature-adaptive feature expansion.

Most of the upsampling models cannot process point clouds
with large holes [26], since the point cloud structure was
destroyed and these models cannot extract the critical structure
effectively. In this context, point cloud upsampling tasks share
the same aim as point cloud completion tasks, as they need
to achieve point cloud inpainting to guarantee the completion
of the whole structure and obtain a uniform and dense point
cloud [28]. As such, point cloud completion is also a popular
topic in 3D reconstruction. PF-Net [29] generated the target
point cloud with both rich semantic profiles and detailed
characters while retaining the existing contour. These models
can achieve point cloud inpainting to guarantee the completion
of the whole structure. Nevertheless, it cannot indicate that
their models can remove the outliers and generate a dense
point cloud uniformly. PCN [30] generated a dense point
cloud in a coarse-to-fine fashion on raw point clouds without
voxelization. ECG [31] can complete the point cloud by
two stages, which are the coarse and fine stages. Likewise,
Wang et al. proposed a cascaded refinement network together
with a coarse-to-fine strategy to synthesize the detailed object
shapes [32]. Their model considered the local details of partial
inputs with the global shape information together. Analo-
gously, our model can achieve the point cloud reconstruction
progressively via multiscale fine-tuning. Benefited from the
special model design and the hybrid loss, our proposed model
can complete various point cloud tasks, e.g., upsampling,
denoising and completion.

B. Point-Based Functional Module

Existing point cloud upsampling models [9], [10], [16]
design point-based functional modules by employing the com-
mon architectures such as ResNet [33], DenseNet [34] and
UNet [35] as backbones. Owing to the limitation of model
structure, these models can only process noisy point clouds
and conduct dense point clouds under the same structure, but
they cannot guarantee the good quality of the point cloud
upsampling task with serious noise. For example, PU-Net [9]
and PU-GAN [10] can process the point cloud with slight
noise. Our proposed Up-UNet feature expansion module con-
sists of an up-feature operator and a down-feature operator,
which combine the benefits of existing point-based functional
modules to process the noisy point clouds well.

A popular and simple up-feature is to duplicate the fea-
ture multiple times. However, this strategy could not pro-
tect the point structure information, such that PU-GAN and
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Fig. 1. The architecture of our proposed model. The shared upsampling module consisting of an Up-UNet and a CR module is cycled multiple times. The
loss function mainly is composed of the multi-scale reconstruction loss and the rendering loss. Due to the point-based differentiable rendering, the error can
be backpropagated.

MPU introduce the grid information to guide point cloud
upsampling. The down-sampling layer, the inverse process of
upsampling, can extract key points and corresponding features.
The traditional methods, such as farthest point sampling and
Poisson disk sampling, have been widely used for decades.
Inspired by the success of PointNet [36] on classification,
many key point extraction methods were studied in recent
years. The PointNet++ [22] captures both local geometry
contexts via a hierarchical feature learning architecture. These
models only deal with a single function and cannot effectively
combine. Our proposed Up-UNet, based on the UNet, learns
the global and local features via an up-feature operator and a
down-feature operator, respectively, to effectively alleviate the
non-uniform distribution issue and remove the outliers.

C. Differentiable Rendering

Renderers are traditionally designed to solve the forward
process of image synthesis. Recently, deep learning has been
popular in 3D reconstruction tasks [23], [37]–[41]. There-
fore, various differentiable rendering techniques were intro-
duced to generate rendering images, which also can help
3D model reconstruction via error backpropagation. Existing
differentiable renderers can be classified into four categories
according to the geometric representation: point-based [23],
[40], [42], [43], voxel-based [44]–[46], mesh-based [37], [47],
[48] and implicit neural function based [49], [50]. Voxel-
based methods come with high memory requirements even
for relatively coarse geometries. Mesh-based methods exploit

the sparseness of the underlying geometry in the 3D space.
However, converting into a mesh form is a challenging and
error-prone operation. These methods are limited to global
and topological changes, and connectivity is not differen-
tiable. More recently, implicit neural functions are popularly
applied to represent scenes, as they can achieve a high spatial
resolution. However, existing approaches are limited by the
low network capacity and inaccurate intersections of camera
rays with the scene geometry. Point-based methods directly
operate on point samples of the geometry, which is flexible
and efficient. In this context, a fast and effective point-based
differentiable renderer [23] is adopted to capture rendering
images from various camera poses, which contributes to the
local geometry reconstruction.

III. PROPOSED MODEL

Suppose the captured raw point cloud is denoted as P ={
pi ∈ R

d
}N

i=1 of N points, where d is the dimension of the
input point cloud attributes, i.e., coordinates, color and normal.
Here, we only consider the 3D coordinates with d = 3. The
point cloud upsampling network aims to generate a denser
point cloud P̂ = {

p̂i ∈ R
d
}r N

i=1 with upsampling ratio r from
P , by minimizing the reconstruction distance between P̂ and
the ground truth (GT) points Q = {

qi ∈ R
d
}r N

i=1. As shown
in Fig. 1, the pipeline of our proposed model consists of a CR
module and L cascaded upsampling module with shared para-
meters. The CR module first transforms the raw point cloud
into the feature domain and outputs the aggregated point-wise
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feature map F0 and initially reconstructed point cloud P0.
The following upsampling module will progressively process
the point cloud Pl−1 with the upsampling ratio rl for the l-th
module and output the reconstructed point cloud Pl . When
L is set to 1 and the first up-feature operator is withdrawn,
it becomes a point cloud completion network. Details of our
proposed CR module and Up-UNet feature expansion module
are discussed as follows.

A. Contextual Representation Module

The proposed CR module aims to extract point features from
the noisy input and output the reconstructed points for the next
upsampling iteration. Specifically, our proposed CR module
consists of feature extraction and coordinate reconstruction
operators. We adopt the feature extraction module in [16],
which can integrate features across different layers through
dense connections. In each dense block, it generates a local
neighbourhood which is computed dynamically via feature-
based K-Nearest Neighbor (KNN). Then, a chain of densely
connected Multilayer Perceptron (MLP) layers refine grouped
features, and finally, a max-pooling operator is applied to
achieve order-invariance. Accordingly, the coordinate recon-
struction operator is capable of extracting long-range and
non-local information. The CR module is embedded into
the primary stage and the end of each Up-UNet upsampling
module. The purpose of the first CR module aims to extract the
contextual features F0, and initially reconstructed points P0.

B. Upsampling Module

As shown in Fig. 1, our proposed upsampling module
consists of an Up-UNet feature expansion unit and a CR mod-
ule. Unlike the official UNet architecture [35], our proposed
module firstly upsamples point features via an up-feature
operator, which not only extracts the local point features but
also adjusts the features according to the neighbouring features
via a channel attention operator. Besides, such upsampling
module can maintain the order of the input point cloud
since the number of features is doubled by duplication. Then,
to keep the consistency of the guided point cloud, we split the
first N point features from the upsampled features. The first
down-feature operator only conducts the sampling operation
without changing the number of points, which extracts neigh-
bouring information and builds the relation of closing points.
The second down-feature operator performs the real down-
sampling to extract key points and important point features.
Subsequently, the continuous upsampling operations, together
with the expansive paths, allow the network to propagate
context information to reconstruct a dense point cloud.

For progressive upsampling, a CR module is stacked after an
Up-UNet feature expansion unit for the coordinate reconstruc-
tion of the upsampled point cloud. Since all the Up-UNet and
CR units share the same parameters, our proposed upsampling
module can handle point clouds with various upsampling
ratios. Details of the up-feature operator and the down-feature
operator are discussed as follows.

Fig. 2. Figure (a) is the case of 2× upsampling. Operators in our proposed
Up-UNet feature expansion modules: (a) Up-UNet; (b) Up-feature operator;
(c) Down-feature operator.

1) Up-Feature Operator: The up-sampling operator is indis-
pensable in the point cloud upsampling task. A common and
simple way is to duplicate the feature multiple times. How-
ever, this way cannot protect the point structure information.
Therefore, to expand the input point feature FU ∈ R

N×C for
r times, our proposed up-feature operator unfolds the point
features based on the 2D grid. As shown in Fig. 2, the 2D
grid mechanism in FoldingNet [51] is adopted to generate
a unique 2D vector via per feature-map copy. Specifically,
the grid position matrix is denoted as GU ∈ R

r×2. Mean-
while, the expanded feature E ∈ R

r N×(C+2) is generated by
duplicating and concatenating input point features and a grid
position vector. The j -th node of expanded feature E is defined
as E j = (G j%r , Fj/r ). Based on the folding method, the up-
feature operator can increase the variation of point features in
the distribution density.

To improve both local channel interaction of point features,
we adopt the ECA unit [52] to readjust features via feature
aggregation of the nearest neighbouring features. Compared
with other attention modules, such as the spatial attention
module [53], [54] and the convolutional block attention
module [55], the ECA unit can appropriate cross-channel
interaction to preserve features and benefits the point feature
reconstruction. At the end of the module, a set of MLPs is
applied to refine and produce more consistent geometric details
for the final expanded point features.
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Fig. 3. The first row shows the pipeline of the differentiable point cloud
renderer [23]. Points in the cube represent the camera poses. The second
row is the rendering results of dense point clouds and its sparse version with
32 camera poses.

2) Down-Feature Operator: The down-feature operator,
the inverse process of upsampling, can extract key points
and corresponding features. The traditional methods, such as
farthest point sampling and Poisson disk sampling, are widely
used for decades. Inspired by the success of PointNet++ [22],
it can capture local geometry contexts via a hierarchical
feature learning architecture. Thus, our down-feature operator
integrates a similar downsampling policy to extract important
point features.

Accordingly, our proposed down-feature operator aims to
hierarchically group input point features and progressively
abstracts key points features. To extract both local and global
salient point features from noisy input point features, we apply
the local learning mechanism on the input point features FD

with the guidance of the input point cloud PD . Specifically,
the proposed local feature extractor comprises three key layers:
a sampling layer, a grouping layer and a PointNet layer. The
sampling layer initially selects the centroids of local regions
following iterative farthest point sampling (FPS) to choose a
subset with N

r points and the corresponding point features.
Then, the grouping layer constructs a group of local point
features GD ∈ R

N
r ×K×(d+C) by finding K neighbouring

points around the centroids. Finally, each local region is
abstracted by its centroid and local features via a mini-
PointNet, which encodes local region patterns GD into feature
vectors ĜD ∈ R

N
r ×(d+C). The module can capture point-to-

point relations in the local region by using relative coordinates
together with point features. Same as the up-feature operator,
an ECA module and a set of MLPs are applied to obtain point
features F̂D ∈ R

N
r ×C .

C. Loss Function

We propose a novel hybrid loss function to train the network
for point cloud upsampling. This hybrid loss contains a
reconstruction loss and a rendering loss, which can encourage
the model to reconstruct detailed point clouds.

1) Multi-Scale Reconstruction Loss: The multi-scale recon-
struction loss measures the difference between the output
points and the GT points with different resolutions. Point
clouds are disordered, such that we employ the Chamfer

Distance (CD) [56] as the reconstruction loss, which is
invariant to permutations of the points. Specifically, we use
the following symmetric CD function, which calculates the
average closest distance between the output point cloud Pl of
the l-th upsampling unit and the corresponding GT points Ql ,
the downsampled version of the GT points Q. In this context,
our model can produce upsampling point clouds with multiple
ratios and ensuring the quality of the upsampled point cloud.

LC D (Pl ,Ql) = 1

|Pl |
∑

p∈Pl

min
q∈Ql

�p − q�2

+ 1

|Ql |
∑

q∈Ql

min
p∈Pl

�q − p�2. (1)

The first term in Eq. (1) focuses on minimizing the distance
of output points and the closest GT point, whereas the second
term ensures that the GT point cloud is covered by the output
point cloud. Finally, we measure the overall reconstruction loss
LR by merging the reconstruction loss of all the upsampling
units,

LR =
L∑

l=1

λlLC D (Pl,Ql) , (2)

where λl represents the weight of the l-th upsaming unit.
2) Rendering Loss: Inspired by the model from

Insafutdinov et al. [23], we introduce the rendering loss
to learn high-fidelity shape models solely from their
projections. Instead of learning camera poses, we fix the
multiple cameras poses to estimate the rendering views.
In this way, our model can reconstruct point clouds by
preserving the details.

To ensure the fidelity of the synthesized images rendered
from the reconstructed point cloud, we employ the point-based
differentiable renderer π as in [23], which projects 3D point
cloud data into 2D view images according to the camera pose
settings. The pipeline of the point cloud renderer is illustrated
in Fig. 3. First, it transforms the 3D coordinate of the raw point
cloud into the standard coordinate frame by the projective
transformation corresponding to the camera pose. Second,
to guarantee the back-propagation of a gradient in the training
stage, the discretized point is represented as scaled Gaussian
densities to obtain the occupancy map. By introducing the dif-
ferentiable ray tracing operator, the occupancies are converted
into ray termination probabilities. Final, the projected image
is obtained by projecting the volume to the plane.

Specifically, given the s-th pose cs , we obtain raw projected
view images Is = π(Q, cs) and reconstructed projected view
images Îs = π(P̂, cs) from the groundtruth Q and final output
P̂, respectively. The rendering loss Lv is defined as the mean
absolute difference of Îs and Îs for all the camera poses. That
is,

Lv = 1

SW H

S∑

s=1

W∑

x=1

H∑

y=1

|Is(x, y) − Îs(x, y)|, (3)

where S is the total number of camera poses. In this work,
we take 8 camera poses evenly on the projection plane of
each rotation axis (x, y, z), and there are 8 camera positions
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Fig. 4. Visual comparisons of upsampled point clouds (×4) by PU-Net [9], MPU [16], PU-GAN [10] and ours.

in each diagonal position with a total of 32 camera poses,
as shown in Fig. 3. Specifically, three colour planes in Fig. 3
represent different projection planes. The 8 points in the colour
planes denote 8 camera positions of rendering images in each
row. Compared with the rendering images of the sparse point
clouds, the rendering images from the dense point clouds
are more clear and have high resolution. The rendering loss
combined with multiple local rendering images will enforce
the network to reconstruct local features of point clouds.

3) Hybrid Loss: Overall, we train our model by minimizing
L:

L = LR + αLv + β�γ�2, (4)

where α is the weight of Lv , γ indicates the parameters in our
network and β denotes the multiplier of the weight decay.

IV. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to evaluate
the performance of our proposed model. In the following
subsections, we first describe the experimental settings such
as datasets, evaluation metrics and implementation details.
Details on the performance comparison between the proposed
model and the SOTA models are described as follows.

A. Experimental Settings

1) Datasets: To objectively compare the performance of the
model, we train and test our model under the dataset provided

by PU-GAN [10], which collected 147 3D models from the
released datasets of PU-Net [9] and MPU [16], as well as
from the Visionair repository [57]. For each point cloud,
we randomly crop 200 patches and collect 24,000 patches
in total. By default, we set the input number N as 256,
the upsampling ratio r as 4. Moreover, we add different
degrees γ ∈ {0.5%, 1%, 1.5%, 2.5%} of Gaussian noise to
evaluate the model’s ability of noisy removal. For the point
completion task, we also train and test our model from a
subset of the Shapenet dataset [58] derived from the dataset in
Yuan et al. [30]. In our experiments, both input and GT point
clouds are sampled 2048 points uniformly. To avoid overfitting
in training, we augment the network inputs by random rotation
and scaling.

2) Implementation Details: We trained the network with
100 epochs via the Adam algorithm [59]. We set the learning
rates as 0.001, and it gradually reduces with the increase of
iterations. The batch size is 28, and {λ1, λ2} = {1.0, 0.3}
and both α and β are empirically set as 1.0. Different from
MPU, our training only needs one stage. We implemented
our network using TensorFlow and trained it on the Tesla
V100 GPU.

Our model can adapt to multi-resolution upsampling. Take
the 4× model as an example that PU-GAN only achieves
the N × 4 upsampling. If PU-GAN requires to realize 2×
upsampling, it needs to samples the results of 4× upsampling.
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Fig. 5. Examples of synthesized images rendered by the point cloud renderer [23] from the “Elk” model, where each row corresponds to a fixed camera
pose. From left to right: they are the rendered images for the GT points, upsampled points of methods PU-Net [9], MPU [16], PU-GAN [10] and Ours,
respectively.

Unlike PU-GAN, our model can directly obtain the output of
the first Up-UNet module as the result of 2× upsampling, and
the second Up-UNet module, as a result of 4× upsampling.
If we want to achieve a higher ratio upsampling, we need to
carry on the cycle operation on the basis of 4× upsampling
because the transformation of 4× feature space is considered
in the model training. If our model upsamples points with 16×
or higher times, we can get the middle 2×, 4×, 8× results
directly. For other upsampling ratios, we can sample the given
number of points from the upsampled points.

3) Evaluation Metrics: For quantitative evaluation,
we employ the point-to-surface (P2F) distance, CD, and
Hausdorff distance (HD) [60] to evaluate our proposed model
against the SOTA methods on point cloud upsampling and
denoising. Each ground truth 3D model contains 8192 points,
and then we randomly select 2048 points as the testing
input. Similarly, we follow the patch-based strategies in
PU-GAN, MPU, EC-Net and PU-GAN to extract a local
patch with 256 points per seed. Then, after processing, these
sub-patches are combined as the final output. For the point
completion task, we evaluate our model across 8 classes from
the Shapenet dataset [58]. For each class, the CD is employed
to evaluate the reconstructed models.

B. Comparisons With the State-of-the-Art Methods

In this subsection, our proposed method is compared with
the SOTA methods on different tasks, including point cloud
upsampling, denoising and completion.

1) Point Cloud Upsampling: We qualitatively and quantita-
tively compare our proposed method with three SOTA point
cloud upsampling methods, including PU-Net [9], MPU [16],
and PU-GAN [10]. We use their public code and retrain their
networks on our training dataset. Table I shows the quantitative
comparison results, which are the average results in the testing
data. Our proposed method achieves the lowest values for
all the evaluation metrics. Besides quantitative results, some
examples of upsampling results for all the methods are pro-
vided in Fig. 4 for four different 3D models (“Horse”, “Tiger”,
“Status” and “Camel”). The first row (Input) shows the input
point clouds, and the second row (GT) is the corresponding
dense points. We amplify the local point cloud and find that
our proposed method has a good performance to deal with
complex areas and produces more fine-grained details.

Fig. 6. The comparison of results under different noisy inputs (“Tiger”).
From top to bottom: they are the GT points, input points, upsampled points
of PU-Net [9], MPU [16], PU-GAN [10] and Ours. From left to right: they
are the results of different models according to inputs with noisy levels of
0.5%, 1.0% and 2.5%.

To analyze the influence of the reconstructed point cloud on
the synthesized images, we further provide examples of syn-
thesized images for the upsampled 3D point clouds in Fig. 5.
It is observed that there are many holes in the synthesized
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TABLE I

QUANTITATIVE COMPARISON WITH THE SOTA METHODS FOR 4×-UPSAMPLING RESULTS ON THE POINT CLOUD UPSAMPLING TASK WITHOUT NOISE
AND WITH 0.5%, 1.0%, 1.5%, AND 2.5% NOISE. (BOLD DENOTES THE BEST PERFORMANCE)

Fig. 7. Visual comparison of the results of Folding [51], PCN [30], PointSetVoting [61], AtlasNet [62], PointNetFCAE [base.], TopNet [63], GRNet [64]
and our proposed method on the point cloud completion task. From top to bottom, there are the results of “Chair”, “Airplane”, “Cabinet” and “Car” models.

images for methods PU-Net, MPU and PU-GAN, which do
not consider the surface reconstruction in their architecture
design. The above models cannot deal with the complex 3D
model with occluded objects or surfaces since the input sparse
point clouds do not have complete structures. Our proposed
method can learn the structure prior from the training dataset
via the constraint of rendering loss.

2) Point Cloud Denoising: To demonstrate the robustness
of our proposed model on noise tolerance, we evaluate all
pre-trained models on a synthetic dataset with different noisy
levels, including 0.5%, 1.0%, 1.5%, and 2.5%, respectively.
All the methods are implemented to 4×-upsamping the noisy
point clouds. Table I shows the comparison results of point
cloud upsampling with different noisy levels. It is observed
that the performance of all the methods decreases as the noise
level increases. As illustrated in Fig. 6, for point clouds with
noise level 0.5%, most models can get rid of noise and keep
a good shape. However, for point clouds with noise level
2.5%, the results of PU-Net, MPU and PU-GAN contain
apparent outliers, e.g., camel’s legs. Thus, these methods can
only process point clouds with a slight noise level and not
process serious noise. Compared with the SOTA methods, our
proposed model is relatively robust to the noise level and can
generate uniform point clouds, e.g., cow’s body.

3) Point Cloud Completion: For performance evaluation on
point cloud completion task, we only use one Up-UNet feature
expansion module and remove the first up-feature operator
in our proposed method. To protect the completion of point
cloud structure, the raw incomplete point clouds is fed into
the network as a whole. The training data for this task has
2048 points per 3D scene. For fast training, the number of
camera poses in the point cloud render is reduced from 32 to 6.
Both EMD and CD as the reconstruction loss better result than
most existing models, but EMD is better than the CD from our
experiment. Therefore, we employ EMD instead of CD as the
reconstruction loss in the point cloud completion task. In the
testing stage, we evaluate our model across 8 category from
the Shapenet dataset, including “Airplane”, “Cabinet”, “Car”,
“Chair”, “Lamp”, “Sofa”, “Table” and “Watercraft”. Table II
summarizes the comparison results on the leaderboard1 pro-
vided by the official testing platform. Notably, the table shows
the average result of each category, not a single 3D model.
Our proposed method is better than most SOTA models for
point cloud completion, but not over GRNet [64]. As shown
in Fig. 7, our proposed method can protect the whole structure,
even if the input points have serious distortion, e.g., the car

1https://completion3d.stanford.edu/results
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TABLE II

PERFORMANCE COMPARISON WITH THE SOTA APPROACHES FOR POINT CLOUD COMPLETION IN THE CD. (BOLD AND UNDERLINING DENOTE THE
BEST AND SECOND PERFORMANCE, RESPECTIVELY)

Fig. 8. Upsampling results of our proposed method on real-scanned LiDAR point clouds. We magnify some cases (e.g., the vehicles, the pedestrian, and the
cyclist), and our model can make point clouds denser and increase more geometrical details.

in the last row. Although our model would generate outliers
in the “Chair” case, like the legs of the chair, it has a clear
skeleton. The “Chair” model completed by PCN has a clear
structure, but this model cannot keep the original shape. For
the “Cabinet” model, even though our model has low CD
values, it can get a similar structure of the GT points and
good visualization. For the “Airplane” model, our model can

gain more detailed information, such as the wing and head of
the plane.

C. Upsampling Real-Scanned Data

Our proposed method is also evaluated on real-world
scanned data downloaded from KITTI dataset [1], which
is captured by LiDAR for autonomous driving. As shown
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Fig. 9. The surface reconstruction of models trained without and with the
rendering loss. (a) the result of the model without Lv , and (b) the result of
the model with Lv .

in Fig. 8, due to the limitation of hardware, the original
point cloud suffers from outliers, sparsity and non-uniform
distribution issues, e.g., vehicles, pedestrians, and cyclists, are
represented with only a few points. Due to a large amount
of point cloud data from the KITTI dataset, we divide every
point cloud into many patches with 256 points, upsample
them 4 times separately, and finally merge them. In this
manner, the point cloud becomes denser and increases more
geometrical details. The dense point clouds with a good
geometrical structure may benefit the other tasks, e.g., point
cloud segmentation and classification.

D. Ablation Study

1) Up-UNet Feature Expansion Module: To quantitatively
evaluate the contribution of our proposed Up-UNet mod-
ule, two deformations, including UNet-Up and Up-Down-Up,
are employed to replace the Up-UNet module. Specifically,
the UNet-Up module only changes the position of the first up-
feature operator. The Up-Down-Up module is from PU-GAN,
and it replaces the Up-UNet. The results are shown in Table III.
For the UNet-Up structure, part of the point information will
lose via the first two down-feature layers. Implementing an
up-feature operator first can help keep the raw information.
For the Up-Down-Up structure, their proposed down-feature
operator does not consider the local relationship. Overall,
our proposed Up-UNet module has a good performance on
neighbouring feature extraction and point cloud reconstruction.

Moreover, an ablation study quantitatively evaluates the
contribution of each of our proposed components, e.g., the
model Ours(Up) using the Up-feature operator instead of
Up-UNet, the model Ours(w/o CR) without the CR module,

TABLE III

THE QUANTITATIVE COMPARISONS OF UP-UNET FEATURE EXPAN-
SION MODULES AND REMOVING EACH SPECIFIC COMPONENT FROM

HYBRID LOSSES

and the model Ours(w/o ECA) without ECA in the upsam-
pling layer. The model names with the signal of “#” (e.g.,
#Ours(Up), #Ours(w/o CR) and #Ours(w/o ECA)) represent
that these models work for noisy point clouds. These results
are from point clouds with a noise level of 2.5%. Our full
pipeline performs well, and removing any component reduces
the overall performance, meaning that each component con-
tributes. In particular, removing the CR module significantly
increased the difficulty of the task. Quantitative results shown
in Ours(Up) and #Ours(Up) demonstrate that the Up-UNet
structure plays an important role in extracting the key points
and reduces noise. The model without the ECA module cannot
readjust features, which leads to poor performance on the final
result.

2) Hybrid Loss: To evaluate the contributions of hybrid
loss on our proposed model, we remove each component of
hybrid loss and evaluate the effect of it. As shown in Table III,
if we do not adopt the rendering loss (denoted as Ours (w/o
Lv )) during the training stage, the upsampling result on the
evaluation of the HD value decreases from 3.911 to 4.128.
Besides quantitative results, we visualize the upsampling and
Poisson surface reconstruction results in Fig. 9. The setting
Ours (w/o Lv ) tends to produce noisy and non-uniform
point sets, thus leads to more holes in the reconstructed
surfaces. By contrast, our proposed method can produce more
fine-grained details in the upsampled results and smoother
surface, e.g., tiger’s leg and cow’s leg.

Besides, we evaluate the setting Ours (w/o LR), which
disables the loss calculation of the first upsampling module.
There is no denying that the setting Ours (w/o LR) has a better
result in P2F and CD, but it cannot consider the output of
every iteration that introduce more artifacts reflected in Fig. 10.
Since each iteration parameters are shared, this training way
tries to obtain a better final output and does not consider the
middle outputs. Hence, the points from the middle stages may
contain some noises. To improve the quality of reconstruction
after every iteration, we constrict the outputs of every iteration
to have more generalization ability to upsample point clouds
with various sizes, as shown in Fig. 10. Comparing with
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Fig. 10. Visualization of point clouds with different upsampling ratios (2×,
4×, 8×, 16× and 32×). The first point cloud is generated by the model
without the middle reconstruction loss, so compared with the second point
cloud, it does not have a clear structure. The rest point clouds are from the
same input with different upsampling ratios. It is thus clear that our model
can achieve progressive upsampling.

the result from the setting Ours (w/o LR), the output point
cloud of our proposed method has fewer artifacts. Due to the
constraint of outputs of every stage, the model has a chance
to correct the mistakes introduced in earlier stages. Besides,
progressive point cloud upsampling is necessary to capture
more local details because our model would adjust the scope
of receptive fields according to the spatial span of the input.

V. CONCLUSION

In this paper, we have proposed a differentiable rendering
based point cloud upsampling framework, which exploits
local and global structure for progressive point cloud upsam-
pling. Specifically, the down-feature operator of our proposed
Up-UNet feature expansion module can extract key point
features by removing the outliers, while the up-feature operator
can expand the point features uniformly via the grid-based
folding approach. With the constraint of the hybrid loss func-
tion, our proposed method can improve reconstructed point
cloud data quality. Finally, we demonstrated the effectiveness
of our proposed model on different tasks via extensive exper-
iments.
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