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Abstract—A common approach for image set compression
(ISC) is to remove the redundancy among images at either signal
or frequency domain. A predominant problem of this approach
is the inefficiency in handling complex geometric deformations
across different images. While many methods have been proposed
to compress the images/videos with end-to-end deep neural
networks, little work has been dedicated to the high efficiency
compression of image sets by mining the cross-image redundan-
cies with neural networks. Here, we propose a new Hybrid Neural
Representation for ISC (HNR-ISC), including an implicit neural
representation for Semantically Common content Compression
(SCC) and an explicit neural representation for Semantically
Unique content Compression (SUC). For SCC, the underlying
principle is converting the semantically common contents into a
small-and-sweet neural representation plus embeddings that can
be conveyed as the bitstream. For SUC, an invertible module
is designed for removing intra-image redundancies. The feature
level combination between SCC and SUC naturally forms the
final image set. Experimental results demonstrate the robustness
and generalization capability of HNR-ISC in terms of perceptual
quality and accuracy for the downstream analysis task.

Index Terms—Image set compression, implicit neural repre-
sentation, image redundancy.

I. INTRODUCTION

RECENT years have witnessed the exponentially growing
services of digital images and videos which have increas-

ingly increased the demand for image compression techniques.
In principle, these techniques aim to achieve highly efficient
representations of images and videos by exploiting various
forms of redundancies (e.g., spatial, perceptual, and statistical
redundancies) [1], [2], [3], [4]. The image sets, which are
formed in an automatic or handcrafted way, could serve as
the fundamental management structure in various products
(e.g., Google Photos and iCloud Photo Library). In addition to
intra-image redundancy, image set compression (ISC) typically
leverages the inter-image redundancies [5] across different
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Fig. 1. The comparisons of three ISC methods: 1) Independent ISC methods
compress each image individually via the image codec, overlooking inter-
image redundancy; 2) Video-based ISC methods form a pseudo video from
the image set and then compresses it using a video codec, requiring high
temporal correlation; 3) Our proposed scheme demonstrates robust and high
generalization capability with the hybrid neural representation.

images. This is typically beyond the commonly-known intra-
redundancy, as different images in the set hold similarities in
multiple granularities.

The inter-image redundancies in image sets are typically
removed via signal or frequency domain predictions [5],
[6], [7], [8], [9]. Based on their prediction structures, these
methods can be categorized into central prediction [6], [7], [8]
and sequential prediction methods [9], [10]. Central prediction
methods initially select or construct one or more representative
images from the set. These representative images are then
independently compressed using image compression methods.
Subsequently, the remaining images can be compressed by
referring to the decoded representative images, with only
the prediction residuals being coded. The methods based
on sequential prediction structures leverage a video coding
framework by reorganizing similar images into a sequence
according to prediction costs. As such, each image can be
decoded sequentially. These methodologies are effective when
dealing with an image set acquired in a single scene, where the
background remains consistent. Unfortunately, images within
a set are often loosely correlated, especially when they are
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grouped automatically based on the foreground objects in a
photo album.

The fundamental challenge in ISC is identifying common
and unique contents, and compressing the respective con-
tent in an effective way. The common contents which share
similar semantic information pertain to consistent objects or
akin attributes that exist across multiple images. Instead of
selecting representative images as the common information,
we emphasize on recognizing and comprehending semantic
information and identifying the common contents by detecting
semantic objects, enabling more accurate extraction of com-
mon contents. Regarding common content compression, the
relationships among images with low explicit correlations are
characterized by an implicit neural representation. Compared
to signal-level prediction [9], [10], [11] which may fail in
complex geometric deformations, our approach models the
inter-image relationship and facilitates the compact representa-
tion from a new perspective based on network learning. With
respect to the semantically unique content, the considerable
degree of intra-image redundancy is removed via an explicit
image compression scheme by an invertible neural network.

More specifically, we propose a hybrid neural representation
for ISC (HNR-ISC), and the advantages of the proposed
scheme are shown in Fig. 1. The proposed scheme includes
an implicit neural representation for Semantically Common
content Compression (SCC) and an explicit neural representa-
tion for Semantically Unique content Compression (SUC), as
illustrated in Fig. 2. To this end, we decompose the images into
two distinct components: the common content and the unique
content. In SCC, common contents are compactly represented
through content-adaptive embeddings and a lightweight net-
work shared by all images. In SUC, the unique content is
obtained by removing the common content at the feature level,
and an invertible neural network is learned to compress the
unique content. The contributions of this work are summarized
as follows,

• We propose a new image set compression framework
HNR-ISC, including an SCC model to remove inter-
image redundancies, and an SUC model for intra-image
redundancy removal. The proposed framework achieves
superior performance in terms of signal quality, percep-
tual quality, and accuracy on the downstream task.

• We develop an SCC model that efficiently compresses
the semantically common content in an image set. SCC
leverages a lightweight yet efficient neural representation
for modeling common objects. As such, it is highly adap-
tive to different scenes, leading to promising efficiency in
common content compression.

• We develop an SUC model that aims to compactly
represent the unique content with the latent code from
the invertible network. This enables the removal of the
intra-image redundancy and ensures the robustness of the
proposed compression framework.

II. RELATED WORKS

A. Image Set Compression
ISC aims to compress a collection of similar images.

Unlike traditional image compression methods that focus

on compressing individual images, ISC considers removing
both inter-image and intra-image redundancies. Many existing
approaches organize the images into a pseudo video, which is
then compressed through existing codecs [9], [10], [11]. For
example, Shi et al. [9] proposed a methodology that establishes
a minimal-cost prediction structure through feature-based k-
means clustering, followed by SIFT-based minimum spanning
tree searching to generate a video. The video is then com-
pressed via an existing video codec. Although this approach
has proven effective for highly correlated images, its perfor-
mance might be suboptimal for images with lower correlation.
Additionally, Shi et al. introduced the pioneering multi-model
prediction (MoP) method for ISC, which significantly reduces
inter-image redundancy [10]. Zhang et al. [12] proposed a
rate-distortion optimized sparse coding scheme, employing a
reordered dictionary specifically designed for ISC. In contrast
to the aforementioned algorithms, Wang et al. [13] presented a
novel deep correlated ISC scheme based on distributed source
coding and multi-scale image fusion.

B. Image Compression

Image compression aims to represent image signals com-
pactly for efficient transmission and storage. Over the past
decades, numerous image compression standards have been
developed, such as JPEG [14], JPEG2000 [15], HEVC
(Intra)[16], [17], and VVC (Intra) [18]. These standards typi-
cally rely on prediction, transform coding, and entropy coding
techniques to reduce redundancies in the images.

Learning-based image compression has demonstrated re-
markable advancements in compression performance, show-
casing the capacity of neural networks to nonlinearly model
visual signals, thereby enhancing compression efficiency [1],
[19]. Researchers have been exploring various possibilities for
the transform module in image compression [1], [2], [20], [3],
[21], [22]. VAE-based models have gained prominence due to
their exceptional performance and architectural stability [1],
[2], [23]. However, these models do not directly tackle the is-
sue of information loss during the encoding process. Invertible
neural networks are generative models that simplify complex
distributions, enabling precise and efficient estimation of prob-
ability density. Incorporating the invertible concept into the
encoding-decoding process presents a promising solution to
address the issue of information loss. By employing a bijective
input-to-output mapping and strictly invertible characteristics,
invertible neural networks offer a suitable framework for
image compression [20], [3]. Xie et al. proposed a highly
invertible architecture that significantly mitigates information
loss during image compression [20]. Inspired by this work,
Cai et al. implemented an invertible activation transformation
module in a mathematically invertible manner, demonstrating
its ability to achieve fine variable-rate control while better
preserving image fidelity [3].

C. Implicit Neural Representation for Compression

Implicit neural representation (INR) has garnered significant
attention for its ability to model various types of signals. It
is achieved by parameterizing a signal with a function that
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Fig. 2. Illustration of the framework of HNR-ISC, including SCC and SUC. The encoder includes semantically common content detection and the encoding
process of SCC and SUC. On the decoder side, both the embedding and the parameters of SCC are extracted from the bitstream in the decoding process of
SCC. These components work together to reconstruct common contents, enabling the decoding of unique content and resulting in the final decoded image
set. Here, SCC-E and SCC-D represent the encoder and decoder of SCC, respectively. Analogously, SUC-E and SUC-D represent the encoder and decoder
of SUC, respectively. u and û denote the unique feature and decoded unique feature, respectively.

generates desired properties based on the input. Consequently,
the signal is implicitly encoded within the parameters of the
network.

In image compression, INR has emerged as a promising
approach that harnesses the power of neural networks to
compress and decompress images without explicitly encod-
ing pixel values [24], [25]. Strumpler et al. [24] introduced
meta-learned initializations for INR-based compression, which
can improve rate-distortion performance. Subsequently, they
proposed a simple yet highly effective modification to the
network architecture compared to previous works. The COIN
model proposed by Dupont et al. [26] stores the weights of
an overfitted neural network instead of storing RGB values
for each pixel in an image. Furthermore, they developed
COIN++, an advanced neural compression framework that
seamlessly handles a wide range of data modalities [27]. In
the field of video compression, INR-based video compression
schemes have made significant advancements. Chen et al. [25]
proposed a novel neural representation for videos (NeRV),
which encodes videos in neural networks. Then, they proposed
a hybrid neural representation to store videos. This approach
offers decoding advantages in terms of speed and flexibility
when compared to traditional codecs.

After obtaining INR, another key issue is model compres-
sion as models govern the bitstream. Model compression aims
to reduce the size and complexity of neural networks [28],
[29]. Model quantization is an essential part of model com-
pression. In particular, it typically reduces the precision of
weights and activations in the model. By representing nu-
merical values with fewer bits with fixed-point quantization
and dynamic range quantization, the size of the model can be
significantly reduced [25], [30].

III. THE PROPOSED METHOD

A. Overview
We propose a hybrid neural representation approach for

compressing image sets. This approach leverages both implicit

and explicit neural representations to effectively reduce inter-
and intra- image redundancy. By disentangling images within
a set into common and unique contents, we achieve efficient
compression using two distinct models: the SCC model for
common content compression and the SUC model for unique
content compression. Our proposed scheme exhibits high
adaptability to various types of image sets and application
scenarios.

At the encoder side, we begin by extracting the semanti-
cally common contents using a saliency detection approach,
followed by the extraction of semantically unique contents
with the assistance of the common content through the UFE
module. To achieve this, we utilize U2-Net [31], in combina-
tion with the alpha matting technique [32] for extracting the
common contents. Then, the semantically common contents
are represented through the SCC model, which consists of
an SCC encoder (SCC-E) for generating the content-adaptive
embedding, and an SCC decoder (SCC-D). Only the em-
bedding and SCC-D are compressed and transmitted as the
final bitstream. Following this vein, the semantically unique
contents are compressed with guidance from the decoded
common contents through the SUC encoder (SUC-E), as
illustrated in Fig. 3.

For the decoder, the received SCC decoder (SCC-D) recon-
structs the common contents from the compact embedding.
Subsequently, the SUC decoder (SUC-D) decompresses the
semantically unique contents with the help of the common
contents. Finally, the images are reconstructed by merging
the decoded common contents and unique contents with the
UFE−1 module.

B. Semantically Common Content Compression

Generally speaking, the different deformations of common
contents make it challenging to model the explicit inter-image
correlation. Thus, we develop the INR model for SCC. In
contrast to explicit compression methods [1], [3], INR based
compression methods store all information implicitly in the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2023 4

network weights θ. Typically, they take the coordinate (x,y)
as the input. The encoding process is akin to training the INR,
which can be represented as:

θ⋆ = argmin
θ

L (c, fθ(x,y)) , (1)

where fθ(∗) represents the INR network parameterized by θ,
and θ⋆ denotes the optimized weight. Then, the model weights
θ⋆ undergo compression and decompression procedures. The
decoding process involves restoring decoding weights into the
network to generate the RGB color from the coordinate (x,
y). This can be expressed as,

ĉ = fθ⋆(x, y), (2)

where c and ĉ are the original RGB color value and the
decoded RGB color value, respectively.

However, using the positional index as input and generating
fixed and content-agnostic embeddings significantly limit the
regression capacity [30]. We design the SCC model following
the auto-encoder structure. The process can be described as
follows:

α⋆, θ⋆ = argmin
α,θ

L (Ic,Dθ(Eα(Ic))) , (3)

where Ic is the semantically common contents. A trainable
encoder Eα produces a compact content-adaptive embedding
e, and the decoder Dθ reconstructs the common content from
this embedding. Through training this model, we can obtain
the optimal weights (α⋆ and θ⋆) of the model. Instead of
compressing the entirety of weights within the SCC model,
we only compress the weight of the decoder θ⋆ plus the em-
bedding e, where e = Eα(Ic). The decoding procedure entails
restoring these decompressed weights θ̂⋆ into the network to
reconstruct the image from the decoded embedding (ê):

Îc = Dθ̂⋆(ê), (4)

where Îc is the decoded semantically common contents.
Model architecture. The encoder consists of multiple

encoding modules Ei, where i denotes the index. More
specifically, Ei contains a Down block and a dilated parallel
residual block (DPR block) [33]. In the DPR block, the input
feature undergoes a convolutional layer with a 1×1 kernel
size to obtain the feature f . Subsequently, we denote the
convolutional operation as Cdr for convenience, where dr
means the dilation radius (dr = {1, 2, 4, 8, 16}). Cdr employs
the same kernel size (3×3). The operation in the DPR block
can be described as follows:

d1 = C1(f) +C2(f),

d2 = d1 +C4(f),

d3 = d2 +C8(f),

d4 = d3 +C16(f),

r = d1 ∪ d2 ∪ d3 ∪ d4,

f̂ = f + r,

(5)

where ∪ represents the concatenation operation. The DPR
block can increase the receptive field for encoding and de-
coding. The compact content-adaptive embedding e can be
obtained through multiple Ei as follows:

e = Ek(..E2(E1(Ic))), (6)

where k is the number of blocks.
The decoder consists of k decoding modules, which can

be adjusted according to the image resolution to get a tiny
embedding. Each decoding module Di contains a DPR block
and an Up block. The DPR block has the same structure as
those in the encoder. The Up block comprises a convolution
layer, a pixel shuffle layer, and an activation layer. Among
these layers, only the convolution layer has learnable param-
eters. To improve convergence speed and enhance the quality
of reconstruction, we propose the integration of a shortcut
mechanism following the Di module.

d1 = D1(e) +U1(e),

d2 = D2(d1) +U2(e),

· · · ,
dk−1 = Dk−1(d1) +Uk−1(e),

Îc = Dk(dk−1).

(7)

Ui is the interpolation operator, which interpolates the em-
bedding to match the size of the features before adding them
together. Finally, we optimize the entire model via the L2 loss.

Model compression. Due to the high-efficiency represen-
tation of INR, semantically common content compression can
be transformed into model compression. By employing the
content-adaptive embedding and SCC-D components, seman-
tically common contents can be reconstructed. The key to
reduce these two components lies in reducing model redun-
dancy, which primarily exists in a large number of high-
precision parameters. Thus, we utilize post-training quantiza-
tion (PTQ) [34], [30], which enables us to adjust the precision
of the weights without the fine-tuning procedure. The formula
for quantization is presented below:

θi = round

(
θi − θmin

S

)
∗ S + θmin, (8)

where
S =

θmax − θmin

2b − 1
. (9)

Herein, the term “round” refers to the procedure of rounding a
given value to the nearest integer. The variable “b” represents
the bit length for the quantized model. θmax and θmin stand
for the maximum and minimum values of the parameter tensor
θ, respectively. The scaling factor is denoted by the variable
S, and each parameter can be assigned a value based on
Eqn. (8) and (9). After applying weight quantization, we
utilize Huffman Coding [35], a lossless compression method,
to compress the quantized weights.

C. Semantically Unique Content Compression

The SUC model aims to eliminate intra-image redundancy
within unique contents, such that the unique contents can
be effectively compressed. In analogous to numerous im-
age compression methods [2], [1], our model adopts the
autoencoder structure. However, conventional autoencoders
encounter information loss issues when transforming images
into a low-dimensional latent space [20], [3]. To alleviate
information loss, we design an invertible module in the SUC
model. This module ensures that both the forward and inverse
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Fig. 3. Illustration of the workflow of the SUC model. The forward processing (encoding) is shown through the red arrows, while the inverse processing
(decoding) is represented via the blue arrows. The green arrows represent the process executed in both the forward and inverse processing. In UFE & UFE−1,
the red arrows represent the encoding process in the UFE module and the blue arrows represent the decoding process in the UFE−1 module. The “Dense
Block” shares the same structure in [3].

procedures possess mathematical invertibility, simultaneously
enabling adaptive weight adjustments tailored to enhance the
fidelity of the semantically unique contents.

Model architecture. As shown in Fig. 3, the unique content
u is first extracted from the i-th image Iis in the image
set via the unique feature extraction module (UFE). Subse-
quently, the compact representation y of the unique content
is obtained through four invertible modules and an attention
channel squeeze. This 4-layer structure resembles that of most
invertible codecs and learning-based image codecs [3], [20],
[1]. In our model, each invertible module consists of an
invertible block, an invertible texture attention (ITA) block,
and an invertible activation transformation (IAT) block. Next,
y is quantized and compressed into a bitstream via a content
entropy model [3] and entropy coding (EC). In the decoder,
the latent representation ŷ is decoded using the entropy
model [3]. The invertible modules in the decoder share the
same parameters as the encoder, but they operate reversely.
Through the four invertible modules, the decoded common
content û is reconstructed. Finally, the decoded image Îis is
reconstructed via the UFE−1 module.

Unique feature extraction module (UFE). To extract the
unique content, we design a UFE module, which efficiently
extracts the unique content with the assistance of the decoded
common contents. In the forward encoding, the input image
Iis extracts the features us ∈ R3×H×W via the Dense block
(DB) [3], while the decoded common content conducts the

same operation to obtain the common features uc ∈ R3×H×W .
In this manner, the unique content u ∈ R3×H×W can be
obtained via the subtraction of the features,

us = DB(Iis), (10)

uc = DB(Iic), (11)

u = us − uc. (12)

In the decoding process, the decoded unique features û and
the common features ûc are combined via pixel-wise addition:

ûc = DB(Iic), (13)

ûs = û+ ûc, (14)

Îis = DB(ûs). (15)

The images are reconstructed via the Dense block.
Invertible module. The invertible module is composed of

three invertible blocks: an invertible block, an ITA block, and
an IAT block. The invertible block and IAT block are the same
as the structure proposed in [20], [3]. The invertible block
serves as the fundamental element in the invertible module,
and it performs a transformation on the input features. The ITA
block is placed after the invertible block for further processing
of the important areas of the transformed features. This block
allocates more weight to the texture reconstruction of the
important area. Finally, after the ITA block, the IAT block
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generates global element-wise activation features based on the
input quality level.

The common content feature ci (i={1, 2, 3, 4}) is the
input of the ITA block. ci is extracted by the feature extrac-
tion module, which includes convolution (Conv) and down-
resolution (Down) layers, as shown in Fig. 3 (“Feature Ex-
traction Module”). The Down layer consists of a convolution
operation with a stride of 2 and kernel size of 3, a max pooling
operation with the size of 2, a convolution operation with
a kernel size of 3 and a stride of 1, an activation function
and a shortcut connection. After the Down layer, the common
feature resolution decreases to the same resolution as the
unique feature. It should be noted that these features ci are
available and shared in the encoder and decoder.

The forward transform of the ITA block is illustrated by
red arrows on the top of Fig. 3 (“ITA”). The inputs include
the unique features fi ∈ Rc×h×w, the common features
ci ∈ Rc×h×w and the ones features 1 ∈ Rc×h×w. The
common features ci are used to represent the important area.
Specifically, the weight map wi ∈ [−1, 1] for the important
area is obtained from ci via a convolution layer and a Tanh
activation function. Then, the feature fi is pixel-wise adjusted
to recursively generate the feature fi+1 using the following
equation:

fi+1 = fi ⊙ (1 + wi), (16)

where ⊙ denotes the Hadamard product. The inverse transform
of the ITA block is illustrated by blue arrows at the bottom of
Fig. 3 (“ITA”). This inverse transform is formulated as:

f̂i = f̂i+1 ⊘ (1 + wi), (17)

where ⊘ denotes the element-wise division.
The training loss is defined as,

Lc = R+ λLre(I
i
s, Î

i
s), (18)

where Iis and Îis are the input image and the decoded image,
respectively. R = EPŷ|ẑ [logPŷ|ẑ] + EPẑ

[− logPẑ] represents
the coding rate, where ŷ and ẑ are the quantized latent rep-
resentations and side information, respectively. Lre estimates
the mean squared error between Iis and Îis. λ is positively
correlated with the quality level.

IV. EXPERIMENTS

A. Implementations and Settings

Datasets. Regarding SCC, given the image set for com-
pression, we train a model for this image set. For the
training of SUC, we use the Flick 30K dataset [36] with
data augmentation through random cropping of 256×256
images. To verify the adaptability of the model to diverse
image scenarios, we evaluate the rate-distortion performance
on three datasets with different image sizes and numbers:
the Oxford flowers dataset (256×256, 6149) [37], the FFHQ
dataset (512×512, 1000) [38] and the Chest X-Ray dataset
(1024×1024, 234) [39]. Due to the large scale of the FFHQ
dataset, we selected the first 1000 images for testing.

Quality evaluation measures. To evaluate the performance
of our proposed approach, we employ Peak Signal-to-Noise

Ratio (PSNR) and Multi-Scale Structural Similarity Index
Measure (MS-SSIM) [40] as the evaluation measures because
PSNR and MS-SSIM are commonly used as benchmarks in the
field of image compression. To provide a more comprehensive
evaluation of our approach, we further use DISTS [41] and
LPIPS [42] to evaluate the perceptual quality since these
quality measures are specifically designed to quantify the per-
ceptual quality of images. In particular, a lower DISTS/LPIPS
value indicates better perceptual quality. Based on these ad-
ditional measures, we can obtain a more accurate assessment
of the visual quality. Furthermore, we extend our evaluation
by utilizing FGVC-PIM1, a classification algorithm, on the
Oxford flowers dataset. In addition to the quality evaluation
measures, we also consider the coding bitrate, measured in
bits per pixel (bpp).

Implementation details. The network is implemented via
the PyTorch framework on NVIDIA GeForce RTX 3090
GPUs. The SCC model undergoes training for 350 epochs,
using a batch size of 2. These choices of epoch and batch
size aim to provide sufficient time for the model to converge
and effectively learn the underlying patterns in the data. For
the training of SUC, we made a slight modification to the
batch size by increasing it to 12 while keeping other settings
consistent with the one mentioned in [3].

B. Performance Comparisons

To verify the effectiveness of the proposed scheme, the
following image compression schemes are involved for perfor-
mance comparisons. Herein, we employ state-of-the-art codecs
for comparison, including VVC, Ballé et al.’s method [2],
Minnen et al.’s method [4] and Cai et al.’s method [3]. We
employ the VVC test model (VTM-15.2) [43] under the all
intra (AI) setting with quantization parameters QPs = {42,
37, 32, 27}, and higher QP values correspond to higher
compression ratios. The training and testing strategies of Ballé
et al.’s [2], Minnen et al.’s and Cai et al.’s [3] methods
follow the official codes. All the training models are trained
on the Flick 30K dataset to ensure fairness. Due to the special
property of the Chest X-Ray dataset, we retrain all models on
the Chest X-Ray dataset.

Comparison in terms of the reconstruction quality. We
conduct Rate-Distortion (RD) performance comparisons on the
testing set by compressing all images with different quality
factors. As shown in Fig. 4 and Table I, we compare our model
with the state-of-the-art (SOTA) methods on three datasets:
the Oxford Flowers dataset, the FFHQ dataset, and the Chest
X-Ray dataset, from left to right. We use PSNR, MS-SSIM,
LPIPS, and DISTS as the quality evaluation measures. Due
to the specificity of the X-Ray dataset, the SCC is applied to
compress the whole image. Our results demonstrate that our
model achieves excellent performance in terms of both signal
quality and perceptual quality on the Oxford Flowers dataset.
More specifically, compared with the Balle et al.’s model,
our proposed model achieves the 42.67%, 46.84%, 57.10%
and 48.88% BDBR reduction in terms of PSNR, MS-SSIM,
LPIPS and DISTS, respectively. On the FFHQ dataset, our

1https://github.com/chou141253/FGVC-PIM
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Fig. 4. The comparisons of rate-distortion performance on the Oxford Flowers dataset, the FFHQ dataset, and the Chest X-Ray dataset in terms of PSNR,
MS-SSIM, LPIPS, and DISTS.

model outperforms other methods at low-bit rates, including
Cai et al.’s model. For the Chest X-Ray dataset, our model
demonstrates promising performance in terms of both fidelity
and perceptual quality, achieving BDBR reductions of 72.31%
in PSNR, 64.79% in MS-SSIM, 52.42% in LPIPS, and 45.42%
in DISTS against the Balle et al.’s model.

Moreover, we show the visual quality comparisons in Fig. 5.
In particular, our approach demonstrates effective preservation
of texture details, particularly in the foreground of the recon-
structed images, as seen in the center of the flower in the
first and second rows in Fig. 5. Moreover, when compared to
other existing models such as Cai et al.’s model and VTM,

our model showcases better robustness against variations in
content type and resolution. Reconstructed images from Cai et
al.’s model tend to suffer from blurriness, indicating diffi-
culties in accurately representing finer details. Analogously,
the images produced by VTM exhibit blocking artifacts that
diminish the overall quality of the decoded images. It is worth
noting that the performance of the model is not limited to a
specific dataset or category of images. Rather, it demonstrates
strong generalization capability across different datasets and
produces high-quality reconstructions for various types of im-
ages. This makes our approach more versatile and applicable
to a wide range of real-world scenarios.
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0.133/26.933 0.117/27.037 0.112/28.199 0.087/28.350

0.067/34.333

Balle et al.

0.055/34.229

Minnen et al.

0.020/33.926

VTM

0.021/34.317

Cai et al.

0.019/34.432

Ours

0.211/27.739 0.207/27.820 0.209/27.545 0.198/28.841 0.179/28.826

GroudTruth

0.029/28.778 0.035/34.220 0.019/34.9610.019/34.433

0.112/28.045

0.019/34.425

Fig. 5. Visual quality comparison of different methods. The images in both the first and second rows are from the same image set, and similarly, the images
in the last two rows also belong to the identical image set. The values below each image are coding bits(bpp)/PSNR(dB) values, where a higher PSNR value
represents better signal quality.

Comparisons in terms of the downstream task. To
evaluate the effectiveness of our proposed framework for the
downstream task, we employ the FGVC-PIM model [44],
known for its high accuracy in classifying pristine images on
the Oxford flower dataset. We specifically focus our evaluation
on the Oxford flower dataset as it is the only dataset designed
for classification. The result, shown in Fig. 6, is measured
using accuracy (%) as the evaluation measure. Our results
show much higher accuracy at the same bitrates, particularly
at low bit rates. It indicates that our framework exhibits both
robustness and high-quality performance to retain important
visual features and information essential for image classifica-
tion.

C. Ablation Studies

To evaluate the performance of each component, we conduct
ablation studies on the SCC and SUC models.

The SCC model. Our proposed SCC employs DPR blocks
and a dedicated shortcut to obtain a compact implicit repre-

sentation of the common content. Therefore, we conduct three
ablation studies on this model, including “Ours (w/o short-
cut)”, “Ours (w/o DPR)” and “Ours (w/o DPR & shortcut)”.
In “Ours (w/o shortcut)”, all shortcut connections are removed.
In “Ours (w/o DPR)”, all DPR blocks are deleted. In “Ours
(w/o DPR & shortcut)”, both the DPR blocks and the shortcut
connections are detached. The comparison results shown in
Table II indicate that the shortcut connection promotes image
reconstruction. We assess different methods with BDBR [45].
When we delete all DPR blocks from the model, the results
drop dramatically. This indicates the DPR blocks contribute
significantly to capturing the underlying structure of the data
and improving the performance of the model. The results in
“Ours(w/o DPR & shortcut)” suggest that the DPR blocks and
shortcuts are necessary for achieving high accuracy.

The SUC model. To verify the efficiency of the UFE
module and ITA block, we initially examine the performance
of our proposed scheme without the UFE module, referred
to as “Ours (w/o UFE)”. In this evaluation, we use the
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TABLE I
THE BDBR(%) PERFORMANCES IN TERMS OF PSNR, MS-SSIM, LPIPS, AND DISTS ON THE OXFORD FLOWERS DATASET, THE FFHQ DATASET, AND

THE CHEST X-RAY DATASET (ANCHOR: BALLE et al.’S MODEL).

Datasets Oxford flower dataset FFHQ dataset Chest X-Ray dataset

Methods PSNR MS-SSIM LPIPS DISTS PSNR MS-SSIM LPIPS DISTS PSNR MS-SSIM LPIPS DISTS

Minnen et al. -14.41 -12.13 -56.43 -38.75 -12.19 -34.92 -82.23 -64.94 -15.24 -21.43 -33.11 -11.80

VTM -29.18 -22.43 -14.41 -11.64 -80.17 -66.36 -23.40 -16.68 -62.47 -48.51 -20.47 -24.43

Cai et al. -29.95 -41.71 -57.46 -39.79 -75.01 -74.82 -73.57 -50.71 -67.00 -55.66 -42.37 -37.05

Ours -42.67 -46.84 -57.10 -48.88 -80.37 -92.02 -98.11 -75.63 -72.31 -64.79 -52.42 -45.42

Fig. 6. The comparisons of rate-distortion performance on the Oxford flower
dataset in terms of accuracy (%).

TABLE II
THE RESULTS OF ABLATION STUDIES ON THE MODEL OF SCC AND SUC

(ANCHOR: THE PROPOSED MODEL).

Models BDBR(%)

Ours(w/o shortcut) 1.6
Ours(w/o DPR) 7.6
Ours(w/o DPR & shortcut) 8.2

Ours(w/o UFE) 18.8
Ours(w/o ITA) 5.4
Ours(w/o UFE & ITA) 11.0

Dense block instead of the UFE module, and omit the input
of the decoded common content. The results indicate that
the absence of these modules significantly deteriorates the
compression performance compared to our proposed scheme.
Subsequently, we evaluate the performance of our proposed
scheme without the ITA block, denoted as “Ours (w/o ITA)”.
The findings highlight the crucial role played by the ITA block
in enhancing the reconstruction of the foreground content.
The ITA block can capture the underlying structure of the
foreground contents by reweighting the features, enabling the
model to prioritize the foreground areas during reconstruction
and thereby improving its ability to restore the foreground

Fig. 7. The influence of the training epoch number on the reconstruction
quality. In particular, increasing the epoch number leads to a corresponding
increase in the quality of the reconstructed images. When the number of
epochs reaches 300, the PSNR growth saturates.

TABLE III
THE COMPARISON OF AVERAGE ENCODING AND DECODING TIME (S).

Time (s) VTM Cai et al. Ours

Encoder 13.240 0.635 28800

Decoder 0.007 1.455 1.492

contents faithfully. Finally, we assess the performance of our
proposed scheme without UFE and ITA blocks, labeled as
“Ours (w/o UFE & ITA)”. Thus, there is no need for additional
bit consumption for the common content. In this manner,
the result is better than “Ours (w/o ITA)”, but does not
outperform the proposed scheme. This further demonstrates
the importance of the UFE module and the ITA block in
achieving better image compression performance.

Encoding and decoding complexity analysis. We further
conduct an evaluation of the encoding and decoding complex-
ities of several compression schemes and present the results in
Table III. The table compares the average running time of en-
coders and decoders for each method on an image set with 50
images. The QP setting in VTM is 47. Specifically, the training
duration for the SCC model typically spans approximately 8
hours. As our model is conditioned on the decoded common
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contents, it exhibits a higher level of decoding complexity than
Cai et al.’s method. It is worth noting that VTM shows the
lowest level of decoding complexity.

Moreover, we conduct experiments to study the influence
of iteration on the quality of the reconstructed common
content. The results are shown in Fig. 7. We can observe
that increasing the epoch number leads to a corresponding
increase in the quality of the reconstructed content. However,
when the number of epochs reaches 300, the PSNR growth
saturates. Different image sets require different iterations for
training, such that we trained three image sets for 350 epochs
to ensure that the model has sufficient time to converge and
learn the underlying patterns.

V. CONCLUSIONS

The novelty of this paper lies in a novel hybrid image set
representation and compression framework, which has been
validated via the compression of several typical image sets.
The proposed HNR-ISC addresses the challenge of efficiently
eliminating redundancy among inter images via the SCC
model and within a single image via the SUC model. The
SCC model compactly represents the common contents of
the image set using an implicit neural representation, which
is then compressed with model compression techniques. The
SUC model employs an invertible neural network for unique
feature extraction and invertible representation. Through ex-
tensive evaluations, our proposed scheme demonstrates supe-
rior performance in signal quality, perceptual quality, and high
accuracy on the downstream task.
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[1] J. Ballé, V. Laparra, and E. P. Simoncelli, “Density modeling of
images using a generalized normalization transformation,” International
Conference on Learning Representations (ICLR), 2016.
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[26] E. Dupont, A. Goliński, M. Alizadeh, Y. W. Teh, and A. Doucet,
“Coin: Compression with implicit neural representations,” arXiv preprint
arXiv:2103.03123, 2021.

[27] E. Dupont, H. Loya, M. Alizadeh, A. Golinski, Y. W. Teh, and
A. Doucet, “COIN++: Neural compression across modalities,” Trans-
actions on Machine Learning Research, vol. 2022, no. 11, 2022.

[28] Z. Li, B. Ni, T. Li, X. Yang, W. Zhang, and W. Gao, “Residual
quantization for low bit-width neural networks,” IEEE Transactions on
Multimedia, vol. 25, pp. 214–227, 2023.

[29] W. Duan, Z. Liu, C. Jia, S. Wang, S. Ma, and W. Gao, “Differential
weight quantization for multi-model compression,” IEEE Transactions
on Multimedia, vol. 25, pp. 6397–6410, 2023.

[30] H. Chen, M. Gwilliam, S.-N. Lim, and A. Shrivastava, “Hnerv: A hybrid
neural representation for videos,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
10 270–10 279, 2023.

[31] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jager-
sand, “U2-net: Going deeper with nested u-structure for salient object
detection,” Pattern recognition, vol. 106, p. 107404, 2020.

[32] T. Germer, T. Uelwer, S. Conrad, and S. Harmeling, “Pymatting: A
python library for alpha matting,” Journal of Open Source Software,
vol. 5, no. 54, p. 2481, 2020.

[33] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi,
“Espnet: Efficient spatial pyramid of dilated convolutions for semantic
segmentation,” in Proceedings of the European Conference on Computer
Vision (ECCV), pp. 552–568, 2018.

[34] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” Low-Power Computer Vision, pp. 291–326, 2022.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, DECEMBER 2023 11

[35] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural network with pruning, trained quantization and huffman coding,”
International Conference on Learning Representations (ICLR), 2016.

[36] P. Young, A. Lai, M. Hodosh, and J. Hockenmaier, “From image
descriptions to visual denotations: New similarity metrics for semantic
inference over event descriptions,” Transactions of the Association for
Computational Linguistics, vol. 2, pp. 67–78, 2014.

[37] M.-E. Nilsback and A. Zisserman, “Automated flower classification over
a large number of classes,” Indian Conference on Computer Vision,
Graphics & Image Processing, pp. 722–729, 2008.

[38] V. Kazemi and J. Sullivan, “One millisecond face alignment with an
ensemble of regression trees,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1867–1874,
2014.

[39] D. Kermany, K. Zhang, M. Goldbaum et al., “Labeled optical coherence
tomography (oct) and chest x-ray images for classification,” Mendeley
data, vol. 2, no. 2, p. 651, 2018.

[40] Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural sim-
ilarity for image quality assessment,” Asilomar Conference on Signals,
Systems & Computers, vol. 2, pp. 1398–1402, 2003.

[41] K. Ding, K. Ma, S. Wang, and E. Simoncelli, “Image quality assessment:
Unifying structure and texture similarity,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, pp. 1–1, 2020.

[42] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The
unreasonable effectiveness of deep features as a perceptual metric,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 586–595, 2018.

[43] “VVC software vtm-15.2,” https://vcgit.hhi.fraunhofer.de/jvet/ VVC-
Software VTM/-/tags/VTM-15.2, online; accessed February 2022.

[44] P.-Y. Chou, C.-H. Lin, and W.-C. Kao, “A novel plug-in module for fine-
grained visual classification,” arXiv preprint arXiv:2202.03822, 2022.

[45] G. Bjontegaard, “Calculation of average psnr differences between rd-
curves,” ITU SG16 Doc. VCEG-M33, 2001.


